NAGIOS: RODERIC FUNCIONANDO

Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm

Mostra el registre parcial de l'element

dc.contributor.author Lucas Lledó, José Ignacio
dc.contributor.author Vicente Salvador, David
dc.contributor.author Aguado, Cristina
dc.contributor.author Cáceres, Mario
dc.date.accessioned 2015-06-25T08:47:16Z
dc.date.available 2015-06-25T08:47:16Z
dc.date.issued 2014
dc.identifier.citation Lucas Lledó, José Ignacio Vicente Salvador, David Aguado, Cristina Cáceres, Mario 2014 Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm Bmc Bioinformatics 15 163
dc.identifier.uri http://hdl.handle.net/10550/44728
dc.description.abstract Background Population genetics and association studies usually rely on a set of known variable sites that are then genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for structural variation detected from sequence data. However, the genotypes at known variable sites can only be inferred with uncertainty from low coverage data. Thus, statistical approaches that infer genotype likelihoods, test hypotheses, and estimate population parameters without requiring accurate genotypes are becoming popular. Unfortunately, the current implementations of these methods are intended to analyse only single nucleotide and short indel variation, and they usually assume that the two alleles in a heterozygous individual are sampled with equal probability. This is generally false for structural variants detected with paired ends or split reads. Therefore, the population genetics of structural variants cannot be studied, unless a painstaking and potentially biased genotyping is performed first. Results We present svgem, an expectation-maximization implementation to estimate allele and genotype frequencies, calculate genotype posterior probabilities, and test for Hardy-Weinberg equilibrium and for population differences, from the numbers of times the alleles are observed in each individual. Although applicable to single nucleotide variation, it aims at bi-allelic structural variation of any type, observed by either split reads or paired ends, with arbitrarily high allele sampling bias. We test svgem with simulated and real data from the 1000 Genomes Project. Conclusions svgem makes it possible to use low-coverage sequencing data to study the population distribution of structural variants without having to know their genotypes. Furthermore, this advance allows the combined analysis of structural and nucleotide variation within the same genotype-free statistical framework, thus preventing biases introduced by genotype imputation.
dc.language.iso eng
dc.relation.ispartof Bmc Bioinformatics, 2014, vol. 15, p. 163
dc.subject Genètica de poblacions
dc.title Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm
dc.type journal article es_ES
dc.date.updated 2015-06-25T08:47:17Z
dc.identifier.doi 10.1186/1471-2105-15-163
dc.identifier.idgrec 105225
dc.rights.accessRights open access es_ES

Visualització       (2.225Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques