Mostra el registre parcial de l'element
dc.contributor.author | Ballester-Bolinches, Adolfo | |
dc.contributor.author | Beidleman, J.C. | |
dc.contributor.author | Esteban Romero, Ramón | |
dc.contributor.author | Pérez Calabuig, Vicent | |
dc.date.accessioned | 2015-09-28T07:59:55Z | |
dc.date.available | 2015-09-28T07:59:55Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Ballester Bolinches, Adolfo; Beidleman, J. C.; Esteban Romero, Ramón; Pérez Calabuig, Vicent (2013) Maximal subgroups and PST-groups Central European Journal Of Mathematics 11 6 1078 1082 | |
dc.identifier.uri | http://hdl.handle.net/10550/47309 | |
dc.description.abstract | A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versiosn of Kaplan's results, which enables a better understanding of the relationships between these classes. | |
dc.language.iso | eng | |
dc.relation.ispartof | Central European Journal Of Mathematics, 2013, vol. 11, num. 6, p. 1078-1082 | |
dc.subject | Àlgebra | |
dc.subject | Grups, Teoria de | |
dc.title | Maximal subgroups and PST-groups | |
dc.type | journal article | es_ES |
dc.date.updated | 2015-09-28T07:59:56Z | |
dc.identifier.doi | 10.2478/s11533-013-0222-z | |
dc.identifier.idgrec | 089623 | |
dc.rights.accessRights | open access | es_ES |