Mostra el registre complet de l'element
Belver Aguilar, Carolina
Faus Golfe, Ángeles (dir.); Toral Fernández, Fernando (dir.) Departament de Física Atòmica, Molecular i Nuclear |
|
Aquest document és un/a tesi, creat/da en: 2015 | |
El descubrimiento del bosón de Higgs ha iniciado una nueva era en el LHC cuyo objetivo será medir las propiedades de dicho bosón con la mayor precisión posible. Sin embargo, dada la complejidad de los protones, compuestos por quarks y gluones, existe el consenso en la Física de Altas Energías de que el próximo colisionador será un colisionador electrón-positrón. Desde un punto de vista simplista, para que electrones y positrones colisionen a muy altas energías en un colisionador circular, la energía perdida por radiación sincrotrón debe reponerse mediante estructuras aceleradoras de radiofrecuencia. Una alternativa para evitar este problema, es construir un colisionador lineal donde dos aceleradores lineales (linacs) opuestos aceleran las partículas hasta alcanzar su energía final en un solo paso antes de hacerlas colisionar en un punto de interacción central. Dos colisionadores lineale...
[Llegir més ...]
[-]
El descubrimiento del bosón de Higgs ha iniciado una nueva era en el LHC cuyo objetivo será medir las propiedades de dicho bosón con la mayor precisión posible. Sin embargo, dada la complejidad de los protones, compuestos por quarks y gluones, existe el consenso en la Física de Altas Energías de que el próximo colisionador será un colisionador electrón-positrón. Desde un punto de vista simplista, para que electrones y positrones colisionen a muy altas energías en un colisionador circular, la energía perdida por radiación sincrotrón debe reponerse mediante estructuras aceleradoras de radiofrecuencia. Una alternativa para evitar este problema, es construir un colisionador lineal donde dos aceleradores lineales (linacs) opuestos aceleran las partículas hasta alcanzar su energía final en un solo paso antes de hacerlas colisionar en un punto de interacción central. Dos colisionadores lineales de electrones y positrones han sido propuestos: ILC (International Linear Collider) en el rango de energías de 1 TeV, y CLIC (Compact Linear Collider) en el rango de energías de 10 TeV. ILC ha sido diseñado para operar a una energía de 0.5 TeV y con una luminosidad de 2×1034cm−2s−1, utilizando cavidades aceleradoras superconductoras con un gradiente de aceleración de 31.5 MV/m. En cambio, CLIC está siendo diseñado para tener una energía de 3 TeV, y una luminosidad máxima de 1035cm−2s−1, con un gradiente de aceleración de 100 MV/m.
Para alcanzar dichas luminosidades se necesitan anillos de amortiguamiento (Damping Rings, DRs) que reduzcan la emitancia de los haces creados por las fuentes de electrones y positrones varios órdenes de magnitud, produciendo además haces muy estables. El diseño de los DRs es diferente en el caso de ILC y CLIC. En CLIC, el tren de paquetes de partículas es relativamente corto con muy poco espacio entre paquetes y una alta frecuencia de repetición, mientras que el tren de paquetes de ILC es más largo, lo que hace que los DRs deban tener un radio mayor. Además, la alta luminosidad necesaria en ILC se consigue aumentando la carga del paquete de partículas, mientras que en CLIC se consigue reduciendo la emitancia del haz hasta valores sin precedentes, especialmente en el plano vertical: 5 nm en el caso de CLIC a una energía de 2.86 GeV, mientras que para ILC es 20 nm a una energía de 5 GeV. Esta emitancia vertical en CLIC se podría conseguir mediante dos pre-damping rings (PDRs) y dos DRs. Para transferir el haz de un anillo a otro, así como desde la fuente de electrones y positrones a los PDRs y desde los DRs a los linacs, se necesita un sistema de inyección y un sistema de extracción del haz en cada uno de los cuatro anillos. Estos sistemas de inyección o extracción (kickers) deben inyectar o extraer el haz de manera muy estable y afectar mínimamente al haz que circula. Estudios anteriores de los kickers de inyección y extracción para el desarrollo del ILC y del CLIC Test Facility 3 (CTF3), demostraron que el kicker electromagnético, conocido como stripline kicker, es el más adecuado para este tipo de operación.
Este proyecto de tesis doctoral tiene como objetivo el desarrollo de la metodología necesaria para diseñar stripline kickers para aceleradores circulares de baja emitancia. En particular esta tesis se basa en el diseño, construcción y tests de laboratorio del stripline kicker para la extracción de haz de los DRs de CLIC, pero los estudios realizados pueden extenderse a los DRs de ILC o a cualquier otro anillo de baja emitancia.
La primera parte de este trabajo de investigación se centra en el estudio y diseño del stripline kicker, consistente en dos electrodos dentro de un tubo cilíndrico de vacío. Con el fin de conseguir las especificaciones requeridas, para el diseño de este prototipo la autora propone un nuevo enfoque que no había sido utilizado hasta ahora en el estudio de Futuros Colisionadores Lineales (FLCs). Éste consiste en el estudio de los dos modos de operación que presentan dos líneas de transmisión acopladas, como es el caso del stripline kicker, analizando cómo varían diferentes parámetros en ambos modos de operación con la geometría de los electrodos, para las dos geometrías más ampliamentes usadas, electrodos planos y electrodos curvos. Estos primeros estudios se han realizado analíticamente y numéricamente usando el código de simulación de campos electromagnéticos en el dominio de la frecuencia HFSS. Estos estudios han sido: impedancia característica de las líneas de transmisión acopladas y homogeneidad del campo electromagnético. De este estudio se concluyó que sólo con los electrodos planos se cumplen las especificaciones de homogeneidad de campo, mientras que la adaptación de impedancias en ambos modos de operación no fueron del todo óptimas. Por este motivo, la autora ha propuesto una nueva geometría, llamada media luna, con la que se mejoró la adaptación de impedancias. Estas dos geometrías, electrodos planos y electrodos media luna, se estudiaron más en profundidad y se confrontaron los resultados para elegir la geometría más óptima. Los estudios realizados fueron los siguientes: la aparición de arcos eléctricos (rigidez dieléctrica) entre los electrodos y el tubo de vacío, la transmisión de potencia a través de los electrodos y la impedancia longitudinal y transversal que ve el haz de partículas al pasar a través del stripline kicker. Estos últimos estudios se realizaron con el programa de simulación de campos electromagnéticos en el dominio del tiempo CST, que permite simular el paso de un haz a través de una estructura. Al final de este estudio, se eligieron los electrodos media luna como la geometría más óptima para el kicker de extracción del haz de los DRs de CLIC.
La segunda parte de este trabajo de tesis consiste en el estudio del resto de componentes, aparte de los electrodos y la cámara de vacío, que conforman un stripline kicker: los soportes de los electrodos y los pasamuros, así como los materiales y el estudio de las tolerancias. Los soportes convencionales no se han utilizado, y un nuevo diseño, consistente en cuatro anillos cerámicos, ha sido propuesto. Estos soportes permiten el ensamblaje de los electrodos fuera de la cámara de vacío, lo que asegura su paralelismo y posición angular antes de introducirlos en la cámara: ésta es la única manera de garantizar la uniformidad de campo. Además, debido al poco espacio entre los electrodos y la cámara de vacío los soportes convencionales no hubiesen podido utilizarse. El programa de simulación CST se ha utilizado para estudiar cómo estos anillos cerámicos, así como los pasamuros comerciales escogidos, afectan a la transmisión de potencia y a la impedancia de acoplamiento del haz.
La tercera parte de la tesis comprende las medidas en laboratorio que han permitido corroborar los estudios analíticos y numéricos realizados previamente a bajas frecuencias. Las medidas realizadas han sido: parámetros de reflexión, impedancia longitudinal del haz, impedancia transversal del haz y fenómenos de arcos eléctricos para alto voltaje. Los resultados para los parámetros de reflexión y para la impedancia longitudinal del haz están de acuerdo con las simulaciones realizadas en la fase del diseño, mientras que para la impedancia transversal, sobre todo en el caso vertical, se necesitarán más estudios. Por otro lado, la aparición de arcos eléctricos a voltajes de unos ±10 kV en DC, hace que sean necesarias medidas con voltajes pulsados para garantizar la correcta operación del kicker una vez instalado en un acelerador. Gracias al profundo conocimiento adquirido durante todo este trabajo, también se presentan diferentes propuestas para kickers de nueva generación.
Para finalizar la caracterización de este primer prototipo, en el futuro se realizarán medidas con haz en un acelerador, que ayudarán a estudiar la impedancia longitudinal y transversal del haz, tanto a bajas como a altas frecuencias.
La construcción de sistemas de inyección y extracción más estables y con baja impedancia de haz, permitirá que haces de muy baja emitancia sean inyectados en los FLCs, aumentando así la probabilidad de colisión en el punto de interacción. Además, todos estos desarrollos serán de gran utilidad en otros aceleradores como por ejemplo futuras fuentes de luz sincrotrón y los Futuros Colisionadores Circulares (FCCs).
|
|
Veure al catàleg Trobes |