NAGIOS: RODERIC FUNCIONANDO

Regular varieties of automata and coequations

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Regular varieties of automata and coequations

Mostra el registre parcial de l'element

dc.contributor.author Salamanca, J.
dc.contributor.author Ballester-Bolinches, Adolfo
dc.contributor.author Bonsangue, M.M.
dc.contributor.author Cosme i Llópez, Enric
dc.contributor.author Rutten, J.J.M.M.
dc.date.accessioned 2015-12-10T11:36:12Z
dc.date.available 2015-12-10T11:36:12Z
dc.date.issued 2015
dc.identifier.citation Salamanca, J. Ballester-Bolinches, Adolfo Bonsangue, M.M. Cosme i Llópez, Enric Rutten, J.J.M.M. 2015 Regular varieties of automata and coequations Lecture Notes in Computer Science 9129 224 237
dc.identifier.uri http://hdl.handle.net/10550/49060
dc.description.abstract In this paper we use a duality result between equations and coequations for automata, proved by Ballester-Bolinches, Cosme-Llópez, and Rutten to characterize nonempty classes of deterministic automata that are closed under products, subautomata, homomorphic images, and sums. One characterization is as classes of automata defined by regular equations and the second one is as classes of automata satisfying sets of coequations called varieties of languages. We show how our results are related to Birkhoff's theorem for regular varieties.
dc.language.iso eng
dc.relation.ispartof Lecture Notes in Computer Science, 2015, vol. 9129, p. 224-237
dc.subject Àlgebra
dc.subject Automatització
dc.title Regular varieties of automata and coequations
dc.type journal article es_ES
dc.date.updated 2015-12-10T11:36:13Z
dc.identifier.doi 10.1007/978-3-319-19797-5_11
dc.identifier.idgrec 105917
dc.rights.accessRights open access es_ES

Visualització       (296.7Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques