NAGIOS: RODERIC FUNCIONANDO

Cosmological constant and local gravity

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Cosmological constant and local gravity

Mostra el registre parcial de l'element

dc.contributor.author Bernabeu Alberola, José
dc.contributor.author Espinoza, Catalina
dc.contributor.author Mavromatos, N. E.
dc.date.accessioned 2016-05-04T07:54:37Z
dc.date.available 2016-05-04T07:54:37Z
dc.date.issued 2010
dc.identifier.citation Bernabeu Alberola, José; Espinoza, Catalina; Mavromatos, N. E. (2010) Cosmological constant and local gravity Physical Review D 81 8 084002
dc.identifier.uri http://hdl.handle.net/10550/53355
dc.description.abstract We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and Λ>0, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations (due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in which the 3-space metric is conformally flat and, then, make an additional coordinate transformation leading to the Lorentz gauge conditions. We compare our non-spherically symmetric solution with the linearized Schwarzschild-de Sitter metric, when the latter is transformed to the Lorentz gauge, and we find agreement. The resulting metric, however, does not acquire a proper Newtonian form in terms of the unique scalar potential that solves the corresponding Poisson equation. Nevertheless, our solution is stable, in the sense that the physical energy density is positive.
dc.language.iso eng
dc.relation.ispartof Physical Review D, 2010, vol. 81, num. 8, p. 084002
dc.subject Física
dc.title Cosmological constant and local gravity
dc.type journal article es_ES
dc.date.updated 2016-05-04T07:54:37Z
dc.identifier.doi 10.1103/PhysRevD.81.084002
dc.identifier.idgrec 068990
dc.rights.accessRights open access es_ES

Visualització       (179.7Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques