The C-terminal domains of apoptotic BH3-only proteins mediate their insertion into distinct biological membranes
Mostra el registre complet de l'element
Visualització
(6.424Mb)
|
|
|
|
|
|
Andreu Fernández, Vicente; García Murria, María Jesús; Bañó Polo, Manuel; Martin, Juliette; Monticelli, Luca; Orzáez Calatayud, María del Mar; Mingarro Muñoz, Ismael
|
|
Aquest document és un/a article, creat/da en: 2016
|
|
|
|
Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the insertion capacity of hydrophobic C-terminal regions of the BH3-only proteins Bik, Bim, Noxa, Bmf, and Puma into microsomal membranes. An Escherichia coli complementation assay was used to validate the results in a cellular context, and peptide insertions were modeled using molecular dynamics simulations. We also found that some of the C-terminal domains were sufficient to direct green fluorescent protein-fusion proteins to specific membranes in human cells, but the domains did not activate apoptosis. Thus, the hydrophobic regions in the C-termini of BH3-only members associated in distinct ways with various biological membranes, suggesting that a detailed investigation of the entire process of apoptosis should include studying the membranes as a setting for protein-protein and protein-membrane interactions.
|
|
Veure al catàleg Trobes
|
|
|
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element