NAGIOS: RODERIC FUNCIONANDO

Lie algebra on the transverse bundle of a decreasing family of foliations

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Lie algebra on the transverse bundle of a decreasing family of foliations

Mostra el registre parcial de l'element

dc.contributor.author Lebtahi, Leila
dc.date.accessioned 2017-03-21T16:45:30Z
dc.date.available 2017-03-21T16:45:30Z
dc.date.issued 2010
dc.identifier.citation Lebtahi, Leila 2010 Lie algebra on the transverse bundle of a decreasing family of foliations Journal of Geometry and Physics 60 1 122 130
dc.identifier.uri http://hdl.handle.net/10550/57742
dc.description.abstract J. Lehmann-Lejeune in [J. Lehmann-Lejeune, Cohomologies sur le fibré transverse à un feuilletage, C.R.A.S. Paris 295 (1982), 495-498] defined on the transverse bundle V to a foliation on a manifold M, a zero-deformable structure J such that J^2 = 0 and for every pair of vector fields X,Y on M: [JX,JY]−J[JX,Y]−J[X,JY]+J^2[X,Y]=0. For every open set Ω of V, J. Lehmann-Lejeune studied the Lie Algebra L_J(Ω) of vector fields X defined on Ω such that the Lie derivative L(X)J is equal to zero i.e., for each vector field Y on Ω: [X,JY]=J[X,Y] and showed that for every vector field X on Ω such that X∈KerJ, we can write X=∑[Y,Z] where ∑ is a finite sum and Y,Z belongs to L_J(Ω)∩(KerJ|Ω). In this note, we study a generalization for a decreasing family of foliations.
dc.language.iso eng
dc.relation.ispartof Journal of Geometry and Physics, 2010, vol. 60, num. 1, p. 122-130
dc.subject Lie, Àlgebres de
dc.subject Foliacions (Matemàtica)
dc.title Lie algebra on the transverse bundle of a decreasing family of foliations
dc.type journal article es_ES
dc.date.updated 2017-03-21T16:45:30Z
dc.identifier.doi 10.1016/j.geomphys.2009.09.003
dc.identifier.idgrec 114139
dc.rights.accessRights open access es_ES

Visualització       (267.9Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques