Mostra el registre parcial de l'element
dc.contributor.author | Lebtahi, Leila | |
dc.date.accessioned | 2017-03-21T16:45:30Z | |
dc.date.available | 2017-03-21T16:45:30Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Lebtahi, Leila 2010 Lie algebra on the transverse bundle of a decreasing family of foliations Journal of Geometry and Physics 60 1 122 130 | |
dc.identifier.uri | http://hdl.handle.net/10550/57742 | |
dc.description.abstract | J. Lehmann-Lejeune in [J. Lehmann-Lejeune, Cohomologies sur le fibré transverse à un feuilletage, C.R.A.S. Paris 295 (1982), 495-498] defined on the transverse bundle V to a foliation on a manifold M, a zero-deformable structure J such that J^2 = 0 and for every pair of vector fields X,Y on M: [JX,JY]−J[JX,Y]−J[X,JY]+J^2[X,Y]=0. For every open set Ω of V, J. Lehmann-Lejeune studied the Lie Algebra L_J(Ω) of vector fields X defined on Ω such that the Lie derivative L(X)J is equal to zero i.e., for each vector field Y on Ω: [X,JY]=J[X,Y] and showed that for every vector field X on Ω such that X∈KerJ, we can write X=∑[Y,Z] where ∑ is a finite sum and Y,Z belongs to L_J(Ω)∩(KerJ|Ω). In this note, we study a generalization for a decreasing family of foliations. | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Geometry and Physics, 2010, vol. 60, num. 1, p. 122-130 | |
dc.subject | Lie, Àlgebres de | |
dc.subject | Foliacions (Matemàtica) | |
dc.title | Lie algebra on the transverse bundle of a decreasing family of foliations | |
dc.type | journal article | es_ES |
dc.date.updated | 2017-03-21T16:45:30Z | |
dc.identifier.doi | 10.1016/j.geomphys.2009.09.003 | |
dc.identifier.idgrec | 114139 | |
dc.rights.accessRights | open access | es_ES |