NAGIOS: RODERIC FUNCIONANDO

Relations between {K, s + 1}-potent matrices and different classes of complex matrices

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Relations between {K, s + 1}-potent matrices and different classes of complex matrices

Mostra el registre parcial de l'element

dc.contributor.author Lebtahi, Leila
dc.contributor.author Romero, Óscar
dc.contributor.author Thome, Néstor
dc.date.accessioned 2017-03-22T17:00:36Z
dc.date.available 2017-03-22T17:00:36Z
dc.date.issued 2013
dc.identifier.citation Lebtahi, Leila Romero, Óscar Thome, Néstor 2013 Relations between {K, s + 1}-potent matrices and different classes of complex matrices Linear Algebra and its Applications 438 4 1517 1531
dc.identifier.uri http://hdl.handle.net/10550/57769
dc.description.abstract In this paper, {K,s+1}-potent matrices are considered. A matrix A∈C^(n×n) is called {K,s+1}-potent when K A^(s+1) K = A where K is an involutory matrix and s∈{1,2,3,¿}. Specifically, {K,s+1}-potent matrices are analyzed considering their relations to different classes of complex matrices. These classes of matrices are: {s+1}-generalized projectors, {K}-Hermitian matrices, normal matrices, and matrices B∈C^(n×n) (anti-)commuting with K or such that KB is involutory, Hermitian or normal. In addition, some new relations for K-generalized centrosymmetric matrices have been derived.
dc.language.iso eng
dc.relation.ispartof Linear Algebra and its Applications, 2013, vol. 438, num. 4, p. 1517-1531
dc.subject Matrius (Matemàtica)
dc.subject Àlgebra lineal
dc.title Relations between {K, s + 1}-potent matrices and different classes of complex matrices
dc.type journal article es_ES
dc.date.updated 2017-03-22T17:00:36Z
dc.identifier.doi 10.1016/j.laa.2011.10.042
dc.identifier.idgrec 114147
dc.rights.accessRights open access es_ES

Visualització       (172.0Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques