NAGIOS: RODERIC FUNCIONANDO

Development of an earth observation processing chain for crop biophysical parameters at local and global scale

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Development of an earth observation processing chain for crop biophysical parameters at local and global scale

Mostra el registre parcial de l'element

dc.contributor.advisor García-Haro, Francisco Javier
dc.contributor.advisor Camps-Valls, Gustau
dc.contributor.author Campos Taberner, Manuel
dc.contributor.other Departament de Física de la Terra i Termodinàmica es_ES
dc.date.accessioned 2017-06-23T10:02:50Z
dc.date.available 2017-06-23T10:02:50Z
dc.date.issued 2017 es_ES
dc.date.submitted 17-07-2017 es_ES
dc.identifier.uri http://hdl.handle.net/10550/59170
dc.description.abstract This thesis’ topics embrace remote sensing for Earth observation, specifically in Earth vegetation monitoring. The Thesis’ main objective is to develop and implement an operational processing chain for crop biophysical parameters estimation at both local and global scales from remote sensing data. Conceptually, the components of the chain are the same at both scales: First, a radiative transfer model is run in forward mode to build a database composed by simulations of vegetation surface reflectance and concomitant biophysical parameters associated to those spectrum. Secondly, the simulated database is used for training and testing nonlinear and non-parametric machine learning regression algorithms. The best model in terms of accuracy, bias and goodness-of-fit is then selected to be used in the operational retrieval chain. Once the model is trained, remote sensing surface reflectance data is fed into the trained model as input in the inversion process to retrieve the biophysical parameters of interest at both local and global scales depending on the inputs spatial resolution and coverage. Eventually, the validation of the leaf area index estimates is performed at local scale by a set of ground measurements conducted during coordinated field campaigns in three countries during 2015 and 2016 European rice seasons. At global scale, the validation is performed through intercomparison with the most relevant and widely validated reference biophysical products. The work elaborated in this Thesis is structured in six chapters including an introduction of remote sensing for Earth observation, the developed processing chain at local scale, the ground LAI measurements acquired with smartphones, the developed chain at global scale, a chapter discussing the conclusions of the work, and a chapter which includes an extended abstract in Valencian. The Thesis is completed by an annex which include a compendium of peer-reviewed publications in remote sensing international journals. es_ES
dc.format.extent 180 p. es_ES
dc.language.iso en es_ES
dc.subject Biophysical parameters es_ES
dc.subject Vegetation es_ES
dc.subject Earth es_ES
dc.subject Machine learning es_ES
dc.subject Remote sensing es_ES
dc.title Development of an earth observation processing chain for crop biophysical parameters at local and global scale es_ES
dc.type doctoral thesis es_ES
dc.subject.unesco UNESCO::CIENCIAS DE LA TIERRA Y DEL ESPACIO::Geología::Teledetección (geología) es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS::Tecnología del espacio ::Satélites artificiales es_ES
dc.embargo.terms 3 months es_ES

Visualització       (196.5Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques