NAGIOS: RODERIC FUNCIONANDO

Evaluation of clinical dental variables to build classifiers to predict celiac disease

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Evaluation of clinical dental variables to build classifiers to predict celiac disease

Mostra el registre parcial de l'element

dc.contributor.author Mina, Silvia es
dc.contributor.author Azcurra, Ana Isabel es
dc.contributor.author Riga, Carolina es
dc.contributor.author Cornejo, Lila Susana es
dc.contributor.author Brunotto, Mabel es
dc.date.accessioned 2017-09-15T07:56:29Z
dc.date.available 2017-09-15T07:56:29Z
dc.date.issued 2008 es
dc.identifier.citation Mina, Silvia ; Azcurra, Ana Isabel ; Riga, Carolina ; Cornejo, Lila Susana ; Brunotto, Mabel. Evaluation of clinical dental variables to build classifiers to predict celiac disease. En: Medicina oral, patología oral y cirugía bucal. Ed. inglesa, 13 7 2008: 1- es
dc.identifier.uri http://hdl.handle.net/10550/60851
dc.description.abstract Objective: The aim of this study was to evaluate the use of salivary variables to build statistical models for predicting celiac disease in symptomatic children. Materials and Methods: the study group consisted of 52 children with celiac disease diagnosed by bowel biopsy, grade III or IV (4 to 12 years old, both sexes) and 23 healthy children as a control group. A logistic regression model was applied to evaluate an individual?s belonging to one group or another. The performance of the model was evaluated by the value of area under the ROC curve. The salivary variables included in the model were the concentration of total proteins, calcium, Ca / P molar ratio, buffer capacity and salivary flow. Results: The total proteins (p = 0.0016) and Ca / P molar ratio (p = 0.0237) variables were significantly associated with the celiac condition. The value of the area under the ROC curve, estimated from the probabilities of the logistic model, showed that salivary component values allow the celiac condition of patients to be predicted with 85% accuracy (p <0.0001). Conclusion: Logistic discriminant analysis built with salivary variables shows that these are good for predicting this eating pathology with 85% accuracy. es
dc.title Evaluation of clinical dental variables to build classifiers to predict celiac disease es
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS MÉDICAS es
dc.identifier.doi es
dc.type.hasVersion VoR es_ES

Visualització       (205.2Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques