NAGIOS: RODERIC FUNCIONANDO

Paving the crossroad of biorefinery

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Paving the crossroad of biorefinery

Mostra el registre parcial de l'element

dc.contributor.advisor Porcar, Manuel
dc.contributor.author Abendroth, Christian
dc.contributor.other Departament de Bioquímica i Biologia Molecular es_ES
dc.date.accessioned 2018-02-26T12:15:36Z
dc.date.available 2018-02-27T05:45:05Z
dc.date.issued 2018 es_ES
dc.date.submitted 23-02-2018 es_ES
dc.identifier.uri http://hdl.handle.net/10550/64917
dc.description.abstract This thesis focuses on anaerobic digestion and, more specifically, on its role in biorefinery and on the dynamic behaviour of the underlying microbiomes. In recent decades, significant progress has been made in the field of anaerobic digestion. Innovative methods, especially highthroughput sequencing approaches, have allowed for a deeper understanding of biotechnologically relevant biocenosis. However, the exact behaviour of the relevant microbiomes under different conditions has not been thoroughly researched. In order to shed light on the diversity of the underlying biocenosis, this thesis compares multiple biogas production facilities in Germany. It also provides the first multi-OMICs characterization of separated acidification stages at mesophilic and thermophilic conditions. At the phylum level, three key microbiomes are identified, which are specific for sewage sludge, highly viscous codigester sludge, and leachate from leach-bed systems. All three microbiomes are strongly related to their underlying environmental parameters (Chemical oxygen demand, total organic carbon, total nitrogen contents, conductivity, total volatile fatty acids, total solids, volatile solids, pH, and volume of biogas). Through various experiments, new methods for acidifying biomass in pretreatment stages were investigated. One of the main contributions of this thesis is to highlight the importance of separated acidification stages as crossroad for multiple industries. Separated acidification potentially allows for the production of multiple organic acids, the usage of many varieties of waste, and the production of hydrogen simultaneously. Moreover, separated acidification might facilitate the usage of substrates that are difficult to digest, such as lignocellulose grass biomass or nitrogen-rich chicken dung. Indeed, this thesis demonstrates that both substrates can contribute to successful liquefaction. In searching for further possible applications based on acidification stages, we developed the first Microbial Thermoelectric Cell (MTC), which is compatible with anaerobic digestion and suitable for use in the pre-treatment stage. The MTC allows for the simultaneous production of ethanol and electric energy. Remnants might be used in a subsequent methane-producing stage. In addition, in seeking further new pretreatment methods, we investigated the possibility of combining thermal pre-treatment with microbe-driven acidification. Surprisingly, we observed only minimal impacts of heat-shocks in the microbial composition. Therefore, it might be possible in the future to combine heatshocks with acidification processes to improve biomass pre-treatment. Furthermore, this possibility highlights the robustness of microbiomes from anaerobic digestion processes. Finally, we isolated news strains from the acidification of grass biomass, with foreseeable roles in anaerobic digestion. en_US
dc.description.abstract This thesis focuses on anaerobic digestion and, more specifically, on its role in biorefinery and on the dynamic behaviour of the underlying microbiomes. In recent decades, significant progress has been made in the field of anaerobic digestion. Innovative methods, especially highthroughput sequencing approaches, have allowed for a deeper understanding of biotechnologically relevant biocenosis. However, the exact behaviour of the relevant microbiomes under different conditions has not been thoroughly researched. In order to shed light on the diversity of the underlying biocenosis, this thesis compares multiple biogas production facilities in Germany. It also provides the first multi-OMICs characterization of separated acidification stages at mesophilic and thermophilic conditions. At the phylum level, three key microbiomes are identified, which are specific for sewage sludge, highly viscous codigester sludge, and leachate from leach-bed systems. All three microbiomes are strongly related to their underlying environmental parameters (Chemical oxygen demand, total organic carbon, total nitrogen contents, conductivity, total volatile fatty acids, total solids, volatile solids, pH, and volume of biogas). Through various experiments, new methods for acidifying biomass in pretreatment stages were investigated. One of the main contributions of this thesis is to highlight the importance of separated acidification stages as crossroad for multiple industries. Separated acidification potentially allows for the production of multiple organic acids, the usage of many varieties of waste, and the production of hydrogen simultaneously. Moreover, separated acidification might facilitate the usage of substrates that are difficult to digest, such as lignocellulose grass biomass or nitrogen-rich chicken dung. Indeed, this thesis demonstrates that both substrates can contribute to successful liquefaction. In searching for further possible applications based on acidification stages, we developed the first Microbial Thermoelectric Cell (MTC), which is compatible with anaerobic digestion and suitable for use in the pre-treatment stage. The MTC allows for the simultaneous production of ethanol and electric energy. Remnants might be used in a subsequent methane-producing stage. In addition, in seeking further new pretreatment methods, we investigated the possibility of combining thermal pre-treatment with microbe-driven acidification. Surprisingly, we observed only minimal impacts of heat-shocks in the microbial composition. Therefore, it might be possible in the future to combine heatshocks with acidification processes to improve biomass pre-treatment. Furthermore, this possibility highlights the robustness of microbiomes from anaerobic digestion processes. Finally, we isolated news strains from the acidification of grass biomass, with foreseeable roles in anaerobic digestion. es_ES
dc.format.extent 237 p. es_ES
dc.language.iso en es_ES
dc.subject Fermentation es_ES
dc.subject Biogas es_ES
dc.subject Biorefinery es_ES
dc.subject Two-stage digestion es_ES
dc.subject Anaerobic digestion es_ES
dc.title Paving the crossroad of biorefinery es_ES
dc.type doctoral thesis es_ES
dc.subject.unesco 230212 - FERMENTACION es_ES
dc.subject.unesco 330202 - TECNOLOGIA DE LA FERMENTACION es_ES
dc.subject.unesco 333000 - BIOTECNOLOGIA es_ES
dc.embargo.terms 0 days es_ES

Visualització       (29.83Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques