Mostra el registre complet de l'element
Montalbán Loro, Raquel
Rodríguez Ferrón, Sacramento (dir.) Departament de Biologia Cel.lular i Parasitologia |
|
Aquest document és un/a tesi, creat/da en: 2018 | |
Adult neural stem cells (NSCs) are able of unlimited self-renew while maintaining their capacity to differentiate. Since their discovery, NSCs have been extensively studied and the field is in continuous progress. The SVZ is the main active neurogenic niche in mice where sustained neurogenesis throughout life occurs. To explore the potential therapeutic use of these cells, the knowledge of their regulation is essential. There is evidence suggesting that epigenetic mechanisms like DNA methylation, histone modification and genomic imprinting can interact with transcriptional and environmental factors in NSCs modulating their plasticity and quiescence, as well as their differentiation capability, however these mechanisms are poorly understood in these cells. The generation of induced pluripotent stem cells (iPSCs) from somatic cells are a unique tool to study the particular properties of t...
[Llegir més ...]
[-]
Adult neural stem cells (NSCs) are able of unlimited self-renew while maintaining their capacity to differentiate. Since their discovery, NSCs have been extensively studied and the field is in continuous progress. The SVZ is the main active neurogenic niche in mice where sustained neurogenesis throughout life occurs. To explore the potential therapeutic use of these cells, the knowledge of their regulation is essential. There is evidence suggesting that epigenetic mechanisms like DNA methylation, histone modification and genomic imprinting can interact with transcriptional and environmental factors in NSCs modulating their plasticity and quiescence, as well as their differentiation capability, however these mechanisms are poorly understood in these cells. The generation of induced pluripotent stem cells (iPSCs) from somatic cells are a unique tool to study the particular properties of the cell of origin. Concretely, it is well described that important epigenetic barriers need to be overcome for a successful reprogramming into iPSCs. To have insights into the epigenetic mechanism regulating NSCs, we compare their epigenetic signature with the changes occurring on the epigenome during the acquisition of a pluripotent state, demonstrating that NSCs are in an intermediate state between differentiated cells and pluripotent cells. Importantly, in this process the epigenetic marks affecting imprinted genes are especially relevant. The recently described ten-eleven-translocation (TET) proteins, named as TET1, TET2 and TET3, are enzymes responsible for the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) that directly affects epigenetic regulation and, consequently, gene transcription. In this work, we show the especial role of TET3 in the reprogramming process as well as its role in neural stemness maintenance. We demonstrate that TET3 needs to be repressed for a successful reprogramming into iPSCs being the highest expressed member of the family in adult NSCs. Importantly, we also show that TET3 exerts its function on the stem cell pool of the SVZ, promoting their undifferentiated state and preventing the differentiation of neural stem cells into non-neurogenic astrocytes through the regulation of Snrpn, an imprinted gene located at the Prader-Willi syndrome gene cluster.Las células madre neurales adultas (NSCs) son capaces de autorrenovarse ilimitadamente mientras mantienen su capacidad de diferenciarse. Desde su descubrimiento, las NSCs se han estudiado extensamente y el campo se mantiene en continuo progreso. La SVZ es el principal nicho neurogénico en ratones en el que la neurogénesis se produce continuamente durante toda la vida. Para explorar el posible uso terapéutico de estas células, el conocimiento de su regulación es esencial. Diversas evidencias sugieren que los mecanismos epigenéticos como la metilación del ADN, las modificaciones de histonas y la impronta genómica pueden interactuar con factores transcripcionales y ambientales en NSCs modulando su plasticidad y quiescencia, así como su capacidad de diferenciación, sin embargo la implicación de estos mecanismos en las NSCs aún está por dilucidar. La generación de células madre pluripotentes inducidas (iPSCs) a partir de células somáticas es una herramienta única para estudiar las propiedades particulares de la célula de origen. Concretamente, está bien descrito que es necesario superar importantes barreras epigenéticas para una reprogramación exitosa en iPSCs. Para conocer los mecanismos epigenéticos que regulan a las NSCs, comparamos su firma epigenética con los cambios que ocurren en el epigenoma durante la adquisición de un estado pluripotente, lo que demuestra que las NSCs se encuentran en un estado intermedio entre las células diferenciadas y las células pluripotentes. Es importante destacar que en este proceso las marcas epigenéticas que afectan a los genes imprintados son especialmente relevantes. Las recientemente descritas proteínas TET (del inglés Ten-Eleven translocation proteins), de las que se han identificado tres miembros TET1, TET2 y TET3, son enzimas responsables de la conversión de 5-metilcitosina (5mC) en 5-hidroximetilcitosina (5hmC), proceso que afecta directamente a la regulación epigenética y, en consecuencia, al proceso de transcripción. En este trabajo, mostramos el papel particular de TET3 en el proceso de reprogramación, así como su papel en el mantenimiento de la identidad neural. Demostramos que TET3 necesita ser reprimido para una reprogramación exitosa en iPSCs siendo el miembro más expresado de la familia en NSCs adultas. Es importante destacar también que TET3 ejerce su función sobre el conjunto de células madre de la SVZ, promoviendo su estado indiferenciado y evitando la diferenciación de las células madre neurales en astrocitos no neurogénicos a través de la regulación de Snrpn, un gen imprintado perteneciente al cluster de genes implicados en el síndrome de Prader-Willi.
|
|
Veure al catàleg Trobes |