Mostra el registre parcial de l'element
dc.contributor.author | Catral, Minerva | |
dc.contributor.author | Lebtahi, Leila | |
dc.contributor.author | Stuart, Jeffrey | |
dc.contributor.author | Thome, Néstor | |
dc.date.accessioned | 2018-05-22T15:13:41Z | |
dc.date.available | 2020-04-11T04:45:06Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Catral, Minerva Lebtahi, Leila Stuart, Jeffrey Thome, Néstor 2018 Matrices A such that A^{s+1}R = RA* with R^k = I Linear Algebra and its Applications 552 85 104 | |
dc.identifier.uri | http://hdl.handle.net/10550/66257 | |
dc.description.abstract | We study matrices A in C^{nxn} such that A^(s+1)R = RA* where R^k = I_n, and s, k are nonnegative integers with k >= 2; such matrices are called {R,s + 1,k; *}-potent matrices. The s = 0 case corresponds to matrices such that A = RA*R^(-1) with R^k = In, and is studied using spectral properties of the matrix R. For s >= 1, various characterizations of the class of {R,s + 1,k, *}-potent matrices and relationships between these matrices and other classes of matrices are presented. | |
dc.language.iso | eng | |
dc.relation.ispartof | Linear Algebra and its Applications, 2018, vol. 552, p. 85-104 | |
dc.subject | Àlgebra lineal | |
dc.subject | Matrius (Matemàtica) | |
dc.title | Matrices A such that A^{s+1}R = RA* with R^k = I | |
dc.type | journal article | es_ES |
dc.date.updated | 2018-05-22T15:13:42Z | |
dc.identifier.doi | 10.1016/j.laa.2018.04.010 | |
dc.identifier.idgrec | 119745 | |
dc.embargo.terms | 2 years | |
dc.rights.accessRights | open access | es_ES |