NAGIOS: RODERIC FUNCIONANDO

Matrices A such that A^{s+1}R = RA* with R^k = I

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Matrices A such that A^{s+1}R = RA* with R^k = I

Mostra el registre parcial de l'element

dc.contributor.author Catral, Minerva
dc.contributor.author Lebtahi, Leila
dc.contributor.author Stuart, Jeffrey
dc.contributor.author Thome, Néstor
dc.date.accessioned 2018-05-22T15:13:41Z
dc.date.available 2020-04-11T04:45:06Z
dc.date.issued 2018
dc.identifier.citation Catral, Minerva Lebtahi, Leila Stuart, Jeffrey Thome, Néstor 2018 Matrices A such that A^{s+1}R = RA* with R^k = I Linear Algebra and its Applications 552 85 104
dc.identifier.uri http://hdl.handle.net/10550/66257
dc.description.abstract We study matrices A in C^{nxn} such that A^(s+1)R = RA* where R^k = I_n, and s, k are nonnegative integers with k >= 2; such matrices are called {R,s + 1,k; *}-potent matrices. The s = 0 case corresponds to matrices such that A = RA*R^(-1) with R^k = In, and is studied using spectral properties of the matrix R. For s >= 1, various characterizations of the class of {R,s + 1,k, *}-potent matrices and relationships between these matrices and other classes of matrices are presented.
dc.language.iso eng
dc.relation.ispartof Linear Algebra and its Applications, 2018, vol. 552, p. 85-104
dc.subject Àlgebra lineal
dc.subject Matrius (Matemàtica)
dc.title Matrices A such that A^{s+1}R = RA* with R^k = I
dc.type journal article es_ES
dc.date.updated 2018-05-22T15:13:42Z
dc.identifier.doi 10.1016/j.laa.2018.04.010
dc.identifier.idgrec 119745
dc.embargo.terms 2 years
dc.rights.accessRights open access es_ES

Visualització       (368.2Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques