NAGIOS: RODERIC FUNCIONANDO

Radiochromic Film Dosimetry: Protocol and Model Selection

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Radiochromic Film Dosimetry: Protocol and Model Selection

Mostra el registre parcial de l'element

dc.contributor.advisor Granero Cabañero, Domingo
dc.contributor.advisor Peterlin, Primož
dc.contributor.author Mendez Carot, Ignasi
dc.contributor.other Departament de Física Atòmica, Molecular i Nuclear es_ES
dc.date.accessioned 2018-05-29T10:44:30Z
dc.date.available 2018-05-30T04:45:06Z
dc.date.issued 2018 es_ES
dc.date.submitted 18-06-2018 es_ES
dc.identifier.uri http://hdl.handle.net/10550/66464
dc.description.abstract This thesis aimed to improve the accuracy of radiochromic film dosimetry with a main focus on optimizing protocols and dosimetry models. The research was divided in four publications. The first paper [Mendez I, Hartman V, Hudej R, Strojnik A, and Casar B, "Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method", Med. Phys. 40, 011720 (2013)] studied film dosimetry with a flatbed scanner in reflection mode, proposed a new plan-based calibration method, and selected models for sensitometric curves and lateral corrections. In the second paper [Mendez I, Peterlin P, Hudej R, Strojnik A, and Casar B, "On multichannel film dosimetry with channel-independent perturbations", Med. Phys. 41, 011705 (2014)], different channel-independent perturbation models for radiochromic film dosimetry were analysed and compared, explaining their implicit assumptions and inherent uncertainties. Several elements of the dosimetry protocol were compared as well. The third article [Mendez I, "Model selection for radiochromic film dosimetry", Phys. Med. Biol. 60, 4089 (2015)] deepened the selection of the dosimetry protocol by examining whether lateral corrections, scanning prior to the irradiation, and multichannel methods significantly improved the accuracy and precision of film doses. Also, a general perturbation model was proposed in this article. Finally, the fourth publication [Méndez I, Šljivić Ž, Hudej R, Jenko A, and Casar B. "Grid patterns, spatial inter-scan variations and scanning reading repeatability in radiochromic film dosimetry", Physica Medica (2016)] studied several sources of uncertainty related to the repeatability of flatbed scanners. Grid patterns and positioning inaccuracies were discovered, and a new method to correct inter-scan variations was proposed. es_ES
dc.description.abstract This thesis aimed to improve the accuracy of radiochromic film dosimetry with a main focus on optimizing protocols and dosimetry models. The research was divided in four publications. The first paper [Mendez I, Hartman V, Hudej R, Strojnik A, and Casar B, "Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method", Med. Phys. 40, 011720 (2013)] studied film dosimetry with a flatbed scanner in reflection mode, proposed a new plan-based calibration method, and selected models for sensitometric curves and lateral corrections. In the second paper [Mendez I, Peterlin P, Hudej R, Strojnik A, and Casar B, "On multichannel film dosimetry with channel-independent perturbations", Med. Phys. 41, 011705 (2014)], different channel-independent perturbation models for radiochromic film dosimetry were analysed and compared, explaining their implicit assumptions and inherent uncertainties. Several elements of the dosimetry protocol were compared as well. The third article [Mendez I, "Model selection for radiochromic film dosimetry", Phys. Med. Biol. 60, 4089 (2015)] deepened the selection of the dosimetry protocol by examining whether lateral corrections, scanning prior to the irradiation, and multichannel methods significantly improved the accuracy and precision of film doses. Also, a general perturbation model was proposed in this article. Finally, the fourth publication [Méndez I, Šljivić Ž, Hudej R, Jenko A, and Casar B. "Grid patterns, spatial inter-scan variations and scanning reading repeatability in radiochromic film dosimetry", Physica Medica (2016)] studied several sources of uncertainty related to the repeatability of flatbed scanners. Grid patterns and positioning inaccuracies were discovered, and a new method to correct inter-scan variations was proposed. en_US
dc.format.extent 156 p. es_ES
dc.language.iso en es_ES
dc.subject física mèdica es_ES
dc.subject dosimetria es_ES
dc.subject radiocròmiques es_ES
dc.title Radiochromic Film Dosimetry: Protocol and Model Selection es_ES
dc.type doctoral thesis es_ES
dc.subject.unesco UNESCO::FÍSICA es_ES
dc.embargo.terms 0 days es_ES

Visualització       (3.941Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques