NAGIOS: RODERIC FUNCIONANDO

Robust depth estimation for light field microscopy

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Robust depth estimation for light field microscopy

Mostra el registre parcial de l'element

dc.contributor.author Palmieri, Luca
dc.contributor.author Scrofani, G.
dc.contributor.author Incardona, Nicolò
dc.contributor.author Saavedra Tortosa, Genaro
dc.contributor.author Martínez Corral, Manuel
dc.contributor.author Koch, Reinhard
dc.date.accessioned 2019-01-28T14:55:26Z
dc.date.available 2019-01-28T14:55:26Z
dc.date.issued 2019
dc.identifier.citation Palmieri, Luca Scrofani, G. Incardona, Nicolò Saavedra Tortosa, Genaro Martínez Corral, Manuel Koch, Reinhard 2019 Robust depth estimation for light field microscopy Sensors 19 3 500
dc.identifier.uri http://hdl.handle.net/10550/68743
dc.description.abstract Light field technologies have seen a rise in recent years and microscopy is a field where such technology has had a deep impact. The possibility to provide spatial and angular information at the same time and in a single shot brings several advantages and allows for new applications. A common goal in these applications is the calculation of a depth map to reconstruct the three-dimensional geometry of the scene. Many approaches are applicable, but most of them cannot achieve high accuracy because of the nature of such images: biological samples are usually poor in features and do not exhibit sharp colors like natural scene. Due to such conditions, standard approaches result in noisy depth maps. In this work, a robust approach is proposed where accurate depth maps can be produced exploiting the information recorded in the light field, in particular, images produced with Fourier integral Microscope. The proposed approach can be divided into three main parts. Initially, it creates two cost volumes using different focal cues, namely correspondences and defocus. Secondly, it applies filtering methods that exploit multi-scale and super-pixels cost aggregation to reduce noise and enhance the accuracy. Finally, it merges the two cost volumes and extracts a depth map through multi-label optimization.
dc.language.iso eng
dc.relation.ispartof Sensors, 2019, vol. 19, num. 3, p. 500
dc.subject Microscòpia
dc.subject Òptica
dc.title Robust depth estimation for light field microscopy
dc.type journal article es_ES
dc.date.updated 2019-01-28T14:55:27Z
dc.identifier.doi 10.3390/s19030500
dc.identifier.idgrec 129735
dc.rights.accessRights open access es_ES

Visualització       (10.69Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques