A zinc-doped endodontic cement facilitates functional mineralization and stress dissipation at the dentin surface
Mostra el registre complet de l'element
Visualització
(2.123Mb)
|
|
|
|
|
|
Toledano Pérez, Manuel; Osorio Ruiz, R.; Pérez-Álvarez, Mayra C.; Osorio Ruiz, E.; Lynch, Christopher D.; Toledano-Osorio, M.
|
|
Aquest document és un/a article, creat/da en: 2018
|
|
|
|
The purpose of this study was to evaluate nanohardness and viscoelastic behavior of dentin surfaces treated with two canal sealer cements for dentin remineralization. Dentin surfaces were subjected to: i) 37% phosphoric acid (PA) or ii) 0.5 M ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite-based cements, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite), respectively. Samples were stored in simulated body fluid during 24 h or 21 d. The intertubular and peritubular dentin were evaluated using a nanoindenter to assess nanohardness (Hi). The load/displacement responses were used for the nano-dynamic mechanical analysis to estimate complex modulus (E*) and tan delta (?). The modulus mapping was obtained by imposing a quasistatic force setpoint to which a sinusoidal force was superimposed. AFM imaging and FESEM analysis were performed. After 21 d of storage, dentin surfaces treated with EDTA+calcypatite, PA+calcypatite and EDTA+oxipatite showed viscoelastic discrepancies between peritubular and intertubular dentin, meaning a risk for cracking and breakdown of the surface. At both 24 h and 21 d, tan ? values at intertubular dentin treated with the four treatments performed similar. At 21 d time point, intertubular dentin treated with PA+oxipatite achieved the highest complex modulus and nanohardness, i.e., highest resistance to deformation and functional mineralization, among groups. Intertubular and peritubular dentin treated with PA+oxipatite showed similar values of tan ? after 21 d of storage. This produced a favorable dissipation of energy with minimal energy concentration, preserving the structural integrity at the dentin surface.
|
|
Veure al catàleg Trobes
|
|
|
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element