NAGIOS: RODERIC FUNCIONANDO

A characterization of the n-ary many-sorted closure operators and a many-sorted Tarski irredundant basis theorem

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

A characterization of the n-ary many-sorted closure operators and a many-sorted Tarski irredundant basis theorem

Mostra el registre parcial de l'element

dc.contributor.author Climent Vidal, J.
dc.contributor.author Cosme i Llópez, Enric
dc.date.accessioned 2019-02-27T14:41:25Z
dc.date.available 2019-11-15T05:45:05Z
dc.date.issued 2018
dc.identifier.citation Climent Vidal, J. Cosme i Llópez, Enric 2018 A characterization of the n-ary many-sorted closure operators and a many-sorted Tarski irredundant basis theorem Quaestiones Mathematicae 1 18
dc.identifier.uri http://hdl.handle.net/10550/69207
dc.description.abstract A theorem of single-sorted algebra states that, for a closure space (A, J ) and a natural number n, the closure operator J on the set A is n-ary if and only if there exists a single-sorted signature Σ and a Σ-algebra A such that every operation of A is of an arity ≤ n and J = SgA, where SgA is the subalgebra generating operator on A determined by A. On the other hand, a theorem of Tarski asserts that if J is an n-ary closure operator on a set A with n ≥ 2, then, for every i, j ∈ IrB(A, J ), where IrB(A, J ) is the set of all natural numbers which have the property of being the cardinality of an irredundant basis (≡ minimal generating set) of A with respect to J , if i < j and {i + 1, . . . , j − 1} ∩ IrB(A, J ) = Ø, then j − i ≤ n − 1. In this article we state and prove the many-sorted counterparts of the above theorems. But, we remark, regarding the first one under an additional condition: the uniformity of the many-sorted closure operator.
dc.language.iso eng
dc.relation.ispartof Quaestiones Mathematicae, 2018, p. 1-18
dc.subject Matemàtica
dc.title A characterization of the n-ary many-sorted closure operators and a many-sorted Tarski irredundant basis theorem
dc.type journal article es_ES
dc.date.updated 2019-02-27T14:41:25Z
dc.identifier.doi 10.2989/16073606.2018.1532931
dc.identifier.idgrec 130222
dc.accrualmethod
dc.embargo.terms 1 year
dc.rights.accessRights open access es_ES

Visualització       (206.2Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques