Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from tiger nuts by-products: Triple-TOF-LC-MS-MS characterization.
Mostra el registre complet de l'element
Visualització
(658.8Kb)
|
|
|
|
|
|
Roselló Soto, Elena; Martí Quijal, Francisco Juan; Cilla Tatay, Antonio; Munekata, Paulo E. S.; Lorenzo, Jose M.; Remize, Fabienne; Barba Orellana, Francisco José
|
|
Aquest document és un/a article, creat/da en: 2019
|
|
|
|
The aim of this study was to assess the effect of temperature, solvent (hydroethanolic mixtures) and pH on the recovery of individual phenolic compounds from 'horchata' by-products. These parameters were optimized by response surface methodology and triple-TOF-LC-MS-MS was selected as the analytical tool to identify and quantify the individual compounds. The optimum extraction conditions were 50% ethanol, 35 °C and pH 2.5, which resulted in values of 222.6 mg gallic acid equivalents (GAE)/100 g dry matter and 1948.1 µM trolox equivalent (TE)/g of dry matter for total phenolic content (TPC) and trolox equivalent antioxidant capacity (TEAC), respectively. The extraction of phenolic compounds by the conventional solvent method with agitation was influenced by temperature (p = 0.0073), and more strongly, by the content of ethanol in the extraction solution (p = 0.0007) while the pH did not show a great impact (p = 0.7961). On the other hand, the extraction of phenolic acids was affected by temperature (p = 0.0003) and by ethanol amount (p < 0.0001) but not by the pH values (p = 0.53). In addition, the percentage of ethanol influenced notably the extraction of both 4-vinylphenol (p = 0.0002) and the hydroxycinnamic acids (p = 0.0039). Finally, the main individual phenolic extracted with hydroethanolic mixtures was 4-vinylphenol (303.3 μg/kg DW) followed by spinacetin3-O-glucosyl-(1→6)-glucoside (86.2 μg/kg DW) and sinensetin (77.8 μg/kg DW).
|
|
Veure al catàleg Trobes
|
|
|
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element