NAGIOS: RODERIC FUNCIONANDO

Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks

Mostra el registre parcial de l'element

dc.contributor.author Vekeman, Jelle
dc.contributor.author García Cuesta, Inmaculada
dc.contributor.author Faginas-Lago, Noelia
dc.contributor.author Sánchez-Marín, José
dc.contributor.author Sánchez de Merás, Alfredo
dc.date.accessioned 2019-06-17T11:38:50Z
dc.date.available 2019-06-17T11:38:50Z
dc.date.issued 2018 es_ES
dc.identifier.citation J Vekeman, IG Cuesta, N Faginas-Lago, J Wilson, J Sánchez-Marín, A Sánchez de Merás, (2018) Physical Chemistry Chemical Physics 20 (39), 25518-25530 es_ES
dc.identifier.uri https://hdl.handle.net/10550/70458
dc.description.abstract Different force fields for the graphene–CH4 system are proposed including pseudo-atom and full atomistic models. Furthermore, different charge schemes are tested to evaluate the electrostatic interaction for the CH4 dimer. The interaction parameters are optimized by fitting to interaction energies at the DFT level, which were themselves benchmarked against CCSD(T) calculations. The potentials obtained with both the pseudo-atom and full atomistic approaches describe accurately enough the average interaction in the methane dimer as well as in the graphene–methane system. Moreover, the atom–atom potentials also correctly provide the energies associated with different orientations of the molecules. In the atomistic models, charge schemes including small charges allow for the adequate representation of the stability sequence of significant conformations of the methane dimer. Additionally, an intermediate charge of −0.63e on the carbon atom in methane leads to bond energies with errors of ca. 0.07 kcal mol−1 with respect to the CCSD(T) values for the methane dimer. For the graphene–methane interaction, the atom–atom potential model predicts an average interaction energy of 2.89 kcal mol−1, comparable to the experimental interaction energy of 3.00 kcal mol−1. Finally, the presented force fields were used to obtain self-diffusion coefficients that were checked against the experimental value found in the literature. The no-charge and Hirshfeld charge atom–atom models perform extremely well in this respect, while the cheapest potential considered, a pseudo-atom model without charges, still performs reasonably well. es_ES
dc.language.iso en es_ES
dc.title Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::QUÍMICA es_ES
dc.identifier.doi 10.1039/C8CP03652G es_ES

Visualització       (2.037Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques