NAGIOS: RODERIC FUNCIONANDO

SILKNOWViz: Spatio-temporal data ontology viewer

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

SILKNOWViz: Spatio-temporal data ontology viewer

Mostra el registre parcial de l'element

dc.contributor.author Sevilla Peris, Javier
dc.contributor.author Portalés, Cristina
dc.contributor.author Gimeno, Jesús
dc.contributor.author Sebastián, Jorge
dc.date.accessioned 2019-07-09T10:44:15Z
dc.date.available 2019-07-09T10:44:15Z
dc.date.issued 2019 es_ES
dc.identifier.citation Sevilla, J., Portalés, C., Gimeno, J. and Sebastián, J. , 2019. SILKNOWViz: Spatio-temporal data ontology viewer. International Conference on Computational Science (ICCS). es_ES
dc.identifier.uri https://hdl.handle.net/10550/70769
dc.description.abstract Interactive visualization of spatio-temporal data is a very active area that has experienced remarkable advances in the last decade. This is due to the emergence of fields of research such as big data and advances in hardware that allow better analysis of information. This article describes the methodology followed and the design of an open source tool, which in addition to interactively visualizing spatio-temporal data that are represented in an ontology, allows the definition of what to visualize and how to do it. The tool allows selecting, filtering and visualizing in a graphical way the entities of the ontology with spatiotemporal data, as well as the instances related to them. The graphical elements used to display the information are specified on the same ontology, extending the VISO graphic ontology, used for mapping concepts to graphic objects with RDFS/OWL Visualization Language (RVL). This extension contemplates the data visualization on rich real-time 3D environments, allowing different modes of visualization according to the level of detail of the scene, while also emphasizing the treatment of spatio-temporal data, very often used in cultural heritage models. This visualization tool involves simple visualization scenarios and high interaction environments that allow complex comparative analysis. It combines traditional solutions, like hypercube or time-animations with innovative data selection methods. es_ES
dc.description.abstract Interactive visualization of spatio-temporal data is a very active area that has experienced remarkable advances in the last decade. This is due to the emergence of fields of research such as big data and advances in hardware that allow better analysis of information. This article describes the methodology followed and the design of an open source tool, which in addition to interactively visualizing spatio-temporal data that are represented in an ontology, allows the definition of what to visualize and how to do it. The tool allows selecting, filtering and visualizing in a graphical way the entities of the ontology with spatiotemporal data, as well as the instances related to them. The graphical elements used to display the information are specified on the same ontology, extending the VISO graphic ontology, used for mapping concepts to graphic objects with RDFS/OWL Visualization Language (RVL). This extension contemplates the data visualization on rich real-time 3D environments, allowing different modes of visualization according to the level of detail of the scene, while also emphasizing the treatment of spatio-temporal data, very often used in cultural heritage models. This visualization tool involves simple visualization scenarios and high interaction environments that allow complex comparative analysis. It combines traditional solutions, like hypercube or time-animations with innovative data selection methods. en_US
dc.language.iso en es_ES
dc.title SILKNOWViz: Spatio-temporal data ontology viewer es_ES
dc.type lecture es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS es_ES
dc.identifier.doi 10.1007/978-3-030-22750-0_8 es_ES
dc.relation.projectID H2020/CULT COOP 9-2016
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/769504/EU/SILKNOW/SILKNOW en

Visualització       (3.143Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques