NAGIOS: RODERIC FUNCIONANDO

pBrain: A novel pipeline for Parkinson related brain structure segmentation

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

pBrain: A novel pipeline for Parkinson related brain structure segmentation

Mostra el registre parcial de l'element

dc.contributor.author Manjón, José Vicente
dc.contributor.author Bertó, Alexa
dc.contributor.author Romero, José E.
dc.contributor.author Lanuza Navarro, Enrique
dc.contributor.author Vivo-Hernando, Roberto
dc.contributor.author Aparici Robles, Fernando
dc.contributor.author Coupé, Pierrick
dc.date.accessioned 2020-03-04T14:56:17Z
dc.date.available 2020-03-04T14:56:17Z
dc.date.issued 2020
dc.identifier.citation Manjón, José Vicente Bertó, Alexa Romero, José E. Lanuza Navarro, Enrique Vivo-Hernando, Roberto Aparici Robles, Fernando Coupé, Pierrick 2020 pBrain: A novel pipeline for Parkinson related brain structure segmentation Neuroimage-Clinical 25 102184
dc.identifier.uri https://hdl.handle.net/10550/73412
dc.description.abstract Parkinson is a very prevalent neurodegenerative disease impacting the life of millions of people worldwide. Although its cause remains unknown, its functional and structural analysis is fundamental to advance in the search of a cure or symptomatic treatment. The automatic segmentation of deep brain structures related to Parkinson`s disease could be beneficial for the follow up and treatment planning. Unfortunately, there is not broadly available segmentation software to automatically measure Parkinson related structures. In this paper, we present a novel pipeline to segment three deep brain structures related to Parkinson's disease (substantia nigra, subthalamic nucleus and red nucleus). The proposed method is based on the multi-atlas label fusion technology that works on standard and high-resolution T2-weighted images. The proposed method also includes as post-processing a new neural network-based error correction step to minimize systematic segmentation errors. The proposed method has been compared to other state-of-the-art methods showing competitive results in terms of accuracy and execution time.
dc.language.iso eng
dc.relation.ispartof Neuroimage-Clinical, 2020, vol. 25, p. 102184
dc.subject Sistema nerviós Malalties
dc.subject Neurologia
dc.title pBrain: A novel pipeline for Parkinson related brain structure segmentation
dc.type journal article es_ES
dc.date.updated 2020-03-04T14:56:17Z
dc.identifier.doi 10.1016/j.nicl.2020.102184
dc.identifier.idgrec 136586
dc.rights.accessRights open access es_ES

Visualització       (987.8Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques