NAGIOS: RODERIC FUNCIONANDO

Spectral study of {R, s + 1, k}- and {R, s + 1, k, ∗}-potent matrices

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Spectral study of {R, s + 1, k}- and {R, s + 1, k, ∗}-potent matrices

Mostra el registre parcial de l'element

dc.contributor.author Catral, Minerva
dc.contributor.author Lebtahi, Leila
dc.contributor.author Stuart, Jeffrey
dc.contributor.author Thome, Néstor
dc.date.accessioned 2020-03-09T15:02:09Z
dc.date.available 2021-08-23T04:45:05Z
dc.date.issued 2020
dc.identifier.citation Catral, Minerva Lebtahi, Leila Stuart, Jeffrey Thome, Néstor 2020 Spectral study of {R, s + 1, k}- and {R, s + 1, k, ∗}-potent matrices Journal of Computational and Applied Mathematics 373 112414 1 13
dc.identifier.uri https://hdl.handle.net/10550/73470
dc.description.abstract The {R, s+1, k}- and {R, s+1, k, ∗}-potent matrices have been studied in several recent papers. We continue these investigations from a spectral point of view. Specifically, a spectral study of {R,s + 1, k}-potent matrices is developed using characterizations involving an associated matrix pencil (A, R). The corresponding spectral study for {R, s+1, k, ∗}-potent matrices involves the pencil (A∗, R). In order to present some properties, the relevance of the projector I −AA# where A# is the group inverse of A is highlighted. In addition, some applications and numerical examples are given, particularly involving Pauli matrices and the quaternions.
dc.language.iso eng
dc.relation.ispartof Journal of Computational and Applied Mathematics, 2020, vol. 373, num. 112414, p. 1-13
dc.subject Matrius (Matemàtica)
dc.title Spectral study of {R, s + 1, k}- and {R, s + 1, k, ∗}-potent matrices
dc.type journal article es_ES
dc.date.updated 2020-03-09T15:02:09Z
dc.identifier.doi 10.1016/j.cam.2019.112414
dc.identifier.idgrec 136668
dc.embargo.terms
dc.rights.accessRights open access es_ES

Visualització       (342.6Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques