Mostra el registre parcial de l'element
dc.contributor.author | Catral, Minerva | |
dc.contributor.author | Lebtahi, Leila | |
dc.contributor.author | Stuart, Jeffrey | |
dc.contributor.author | Thome, Néstor | |
dc.date.accessioned | 2020-03-09T15:02:09Z | |
dc.date.available | 2021-08-23T04:45:05Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Catral, Minerva Lebtahi, Leila Stuart, Jeffrey Thome, Néstor 2020 Spectral study of {R, s + 1, k}- and {R, s + 1, k, ∗}-potent matrices Journal of Computational and Applied Mathematics 373 112414 1 13 | |
dc.identifier.uri | https://hdl.handle.net/10550/73470 | |
dc.description.abstract | The {R, s+1, k}- and {R, s+1, k, ∗}-potent matrices have been studied in several recent papers. We continue these investigations from a spectral point of view. Specifically, a spectral study of {R,s + 1, k}-potent matrices is developed using characterizations involving an associated matrix pencil (A, R). The corresponding spectral study for {R, s+1, k, ∗}-potent matrices involves the pencil (A∗, R). In order to present some properties, the relevance of the projector I −AA# where A# is the group inverse of A is highlighted. In addition, some applications and numerical examples are given, particularly involving Pauli matrices and the quaternions. | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Computational and Applied Mathematics, 2020, vol. 373, num. 112414, p. 1-13 | |
dc.subject | Matrius (Matemàtica) | |
dc.title | Spectral study of {R, s + 1, k}- and {R, s + 1, k, ∗}-potent matrices | |
dc.type | journal article | es_ES |
dc.date.updated | 2020-03-09T15:02:09Z | |
dc.identifier.doi | 10.1016/j.cam.2019.112414 | |
dc.identifier.idgrec | 136668 | |
dc.embargo.terms | ||
dc.rights.accessRights | open access | es_ES |