Mostra el registre parcial de l'element
dc.contributor.author | Sebastia-Luna, Paz | |
dc.contributor.author | Gélvez-Rueda, María C. | |
dc.contributor.author | Dreessen, Chris | |
dc.contributor.author | Sessolo, Michele | |
dc.contributor.author | Grozema, Ferdinand C. | |
dc.contributor.author | Palazón Huet, Francisco | |
dc.contributor.author | Bolink, Henk | |
dc.date.accessioned | 2020-06-17T10:59:18Z | |
dc.date.available | 2021-05-12T04:45:05Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Sebastia-Luna, Paz Gélvez-Rueda, María C. Dreessen, Chris Sessolo, Michele Grozema, Ferdinand C. Palazón Huet, Francisco Bolink, Henk 2020 Potential and limitations of CsBi3I10 as a photovoltaic material, Journal Of Materials Chemistry a. vol. 8 pp 15670 a pp. 15674. | |
dc.identifier.uri | https://hdl.handle.net/10550/75094 | |
dc.description | Perovskite Thin-film Photovoltaics (PERTPV). Hetero-structures for Efficient Luminescent Devices (HELD) | en |
dc.description.abstract | Herein we demonstrate the dry synthesis of CsBi3I10 both as a free-standing material and in the form of homogeneous thin films, deposited by thermal vacuum deposition. Chemical and optical characterization shows high thermal stability, phase purity, and photoluminescence centered at 700 nm, corresponding to a bandgap of 1.77 eV. These characteristics make CsBi3I10 a promising low-toxicity material for wide bandgap photovoltaics. Nevertheless, the performance of this material as a semiconductor in solar cells remains rather limited, which can be at least partially ascribed to a low charge carrier mobility, as determined from pulsed-radiolysis time-resolved microwave conductivity. Further developments should focus on understanding and overcoming the current limitations in charge mobility, possibly by compositional tuning through doping and/or alloying, as well as optimizing the thin film morphology which may be another limiting factor. | |
dc.description.sponsorship | EXCELLENT SCIENCE - European Research Council (ERC) | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal Of Materials Chemistry a, 2020 | |
dc.subject | Materials | |
dc.title | Potential and limitations of CsBi3I10 as a photovoltaic material | |
dc.type | journal article | es_ES |
dc.date.updated | 2020-06-17T11:00:17Z | |
dc.identifier.doi | 10.1039/D0TA02237C | |
dc.identifier.idgrec | 139685 | |
dc.embargo.terms | 1 year | |
dc.rights.accessRights | open access | es_ES |
dc.relation.projectID | ERC/Grant agreement ID: 834431 | en |
dc.relation.projectID | Horizon 2020/Grant agreement ID: 763977 | en |