NAGIOS: RODERIC FUNCIONANDO

Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain

Mostra el registre parcial de l'element

dc.contributor.author Neukom, Martin T.
dc.contributor.author Schiller, Andreas
dc.contributor.author Züfle, Simon
dc.contributor.author Knapp, Evelyne
dc.contributor.author Ávila, Jorge
dc.contributor.author Pérez-del-Rey, Daniel
dc.contributor.author Dreessen, Chris
dc.contributor.author Zanoni, Kassio P. S.
dc.contributor.author Sessolo, Michele
dc.contributor.author Bolink, Henk
dc.contributor.author Ruhstaller, Beat
dc.date.accessioned 2020-06-19T07:28:36Z
dc.date.available 2020-06-19T07:28:36Z
dc.date.issued 2019
dc.identifier.citation Neukom, Martin T. Schiller, Andreas Zu&#776fle, Simon Knapp, Evelyne Ávila, Jorge Pérez-del-Rey, Daniel Dreessen, Chris Zanoni, Kassio P. S. Sessolo, Michele Bolink, Henk Ruhstaller, Beat 2019 Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain Acs Applied Materials & Interfaces 11 23320 23328
dc.identifier.uri https://hdl.handle.net/10550/75136
dc.description.abstract A variety of experiments on vacuum-deposited methylammonium lead iodide perovskite solar cells are presented, including JV curves with different scan rates, light intensity-dependent open-circuit voltage, impedance spectra, intensitymodulated photocurrent spectra, transient photocurrents, and transient voltage step responses. All these experimental data sets are successfully reproduced by a charge drift-diffusion simulation model incorporating mobile ions and charge traps using a single set of parameters. While previous modeling studies focused on a single experimental technique, we combine steady-state, transient, and frequency-domain simulations and measurements. Our study is an important step toward quantitative simulation of perovskite solar cells, leading to a deeper understanding of the physical effects in these materials. The analysis of the transient current upon voltage turn-on in the dark reveals that the charge injection properties of the interfaces are triggered by the accumulation of mobile ionic defects. We show that the current rise of voltage step experiments allow for conclusions about the recombination at the interface. Whether one or two mobile ionic species are used in the model has only a minor influence on the observed effects. A delayed current rise observed upon reversing the bias from +3 to −3 V in the dark cannot be reproduced yet by our drift-diffusion model. We speculate that a reversible chemical reaction of mobile ions with the contact material may be the cause of this effect, thus requiring a future model extension. A parameter variation is performed in order to understand the performance-limiting factors of the device under investigation.
dc.language.iso eng
dc.relation.ispartof Acs Applied Materials & Interfaces, 2019, vol. 11, p. 23320-23328
dc.subject Cèl·lules fotoelèctriques
dc.subject Materials
dc.title Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain
dc.type journal article es_ES
dc.date.updated 2020-06-19T07:28:36Z
dc.identifier.doi 10.1021/acsami.9b04991
dc.identifier.idgrec 133798
dc.rights.accessRights open access es_ES

Visualització       (1.090Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques