NAGIOS: RODERIC FUNCIONANDO

Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles

Mostra el registre parcial de l'element

dc.contributor.author Girbés, Vicent
dc.contributor.author Hernández Ferrándiz, Daniel
dc.contributor.author Armesto, Leopoldo
dc.contributor.author Dols, Juan F.
dc.contributor.author Sala, Antonio
dc.date.accessioned 2020-06-22T10:17:34Z
dc.date.available 2020-06-22T10:17:34Z
dc.date.issued 2019
dc.identifier.citation Girbés, Vicent Hernández Ferrándiz, Daniel Armesto, Leopoldo Dols, Juan F. Sala, Antonio 2019 Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles Sensors 19 3515 1 19
dc.identifier.uri https://hdl.handle.net/10550/75163
dc.description.abstract Modelling the dynamic behaviour of heavy vehicles, such as buses or trucks, can be very useful for driving simulation and training, autonomous driving, crash analysis, etc. However, dynamic modelling of a vehicle is a difficult task because there are many subsystems and signals that affect its behaviour. In addition, it might be hard to combine data because available signals come at different rates, or even some samples might be missed due to disturbances or communication issues. In this paper, we propose a non-invasive data acquisition hardware/software setup to carry out several experiments with an urban bus, in order to collect data from one of the internal communication networks and other embedded systems. Subsequently, non-conventional sampling data fusion using a Kalman filter has been implemented to fuse data gathered from different sources, connected through a wireless network (the vehicle's internal CAN bus messages, IMU, GPS, and other sensors placed in pedals). Our results show that the proposed combination of experimental data gathering and multi-rate filtering algorithm allows useful signal estimation for vehicle identification and modelling, even when data samples are missing.
dc.language.iso eng
dc.relation.ispartof Sensors, 2019, vol. 19, num. 3515, p. 1-19
dc.subject Vehicles
dc.subject Simulació per ordinador
dc.title Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles
dc.type journal article es_ES
dc.date.updated 2020-06-22T10:17:35Z
dc.identifier.doi 10.3390/s19163515
dc.identifier.idgrec 140059
dc.rights.accessRights open access es_ES

Visualització       (3.922Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques