NAGIOS: RODERIC FUNCIONANDO

Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

Mostra el registre parcial de l'element

dc.contributor.author Francés Villora, José Vicente
dc.contributor.author Bataller Mompean, Manuel
dc.contributor.author Mjahad, Azeddine
dc.contributor.author Rosado Muñoz, Alfredo
dc.contributor.author Gutiérrez Martín, Antonio
dc.contributor.author Teruel Martí, Vicent
dc.contributor.author Villanueva, Vicente
dc.contributor.author Hampel, Kevin G.
dc.contributor.author Guerrero Martínez, Juan Francisco
dc.date.accessioned 2020-09-24T14:44:19Z
dc.date.available 2020-09-24T14:44:19Z
dc.date.issued 2020
dc.identifier.citation Francés Villora, José Vicente Bataller Mompean, Manuel Mjahad, Azeddine Rosado Muñoz, Alfredo Gutiérrez Martín, Antonio Teruel Martí, Vicent Villanueva, Vicente Hampel, Kevin G. Guerrero Martínez, Juan Francisco 2020 Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation Applied Sciences-Basel 10 827
dc.identifier.uri https://hdl.handle.net/10550/75650
dc.description.abstract The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows.
dc.language.iso eng
dc.relation.ispartof Applied Sciences-Basel, 2020, vol. 10, num. 827
dc.subject Enginyeria biomèdica
dc.subject Electroencefalografia
dc.subject Electrodiagnòstic
dc.title Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation
dc.type journal article es_ES
dc.date.updated 2020-09-24T14:44:20Z
dc.identifier.doi 10.3390/app10030827
dc.identifier.idgrec 140457
dc.rights.accessRights open access es_ES

Visualització       (384.1Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques