|
To compare the effect of Er:YAG Laser and Air particle abrasion (APA) surface treatments on shear bond strength of Y-TZP to composite resin cuboids in the presence and absence of primer application and salivary contamination. Seventy-two cuboidal shaped specimens 7x7x3 were prepared from Y-TZP using CADCAM, cleaned and sintered. Specimens were divided into 2 main groups (n=36) according to surface treatment method; Air particle abrasion (A) and laser (L). Each group was subdivided into 2 subgroups (N = 18) according to surface modification using primer; each subgroup was further divided into 2 subdivisions (N=9) according to the presence of salivary contamination; APC (Air particle abrasion, primer, contamination), AP (Air particle abrasion, primer), AC (Air particle abrasion, contamination), A (Air particle abrasion), LPC (Laser, primer, contamination), LP (Laser, primer), LC (Laser, contamination), L (Laser). Composite cuboids having dimensions of 6x6x3 were also fabricated using custom made plexi plates. Composite cuboids were cemented centrally to zirconia cuboids and light cured under 5 kg weight for 6 mins. Shear bond strength of specimens was measured utilizing universal testing machine at a crosshead speed of 0.5 mm/min. Failure loads were recorded in Newton. SBS was calculated according to equation: SBS (MPa) = load (N)/area(mm2). Viewing shear bond strength between studied groups, group APNC (484.02±85.02) showed higher mean value compared to ANPNC (122.09±55.80), also LNPNC (120.87±65.10) showed higher mean value in comparison to LPNC (170.78±53.22). APNC (484.02±85.02) and APC (592.22±189.65) showed higher mean values than LPNC (170.78±53.22) and LPC (3227.66±108.28) in sequence. APA showed higher SBS values than Er:YAG surface treatment. Primer showed better results than no primer coating. Artificial saliva contamination did not affect the SBS of zirconia compared with no contamination results.
|