NAGIOS: RODERIC FUNCIONANDO

Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes

Mostra el registre parcial de l'element

dc.contributor.author Pipia, Luca
dc.contributor.author Muñoz Marí, Jordi
dc.contributor.author Amin, Eatidal
dc.contributor.author Belda, Santiago
dc.contributor.author Camps-Valls, Gustau
dc.contributor.author Verrelst, Jochem
dc.date.accessioned 2020-12-09T14:05:00Z
dc.date.available 2020-12-09T14:05:00Z
dc.date.issued 2019
dc.identifier.citation Pipia, Luca Muñoz Marí, Jordi Amin, Eatidal Belda, Santiago Camps Valls, Gustavo Verrelst, Jochem 2019 Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes Remote Sensing of Environment 235 1111452
dc.identifier.uri https://hdl.handle.net/10550/76590
dc.description.abstract The availability of satellite optical information is often hampered by the natural presence of clouds, which can be problematic for many applications. Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions. Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation, but given its high and distinct sensitivity to different surface properties, the fusion of SAR and optical data still remains an open challenge. In this work, we propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among multisensor time series, to detect vegetated areas over which the synergy between SAR-optical imageries is profitable. For this purpose, we use the Sentinel-1 Radar Vegetation Index (RVI) and Sentinel-2 Leaf Area Index (LAI) time series over a study area in north west of the Iberian peninsula. Through a physical interpretation of MOGP trained models, we show its ability to provide estimations of LAI even over cloudy periods using the information shared with RVI, which guarantees the solution keeps always tied to real measurements. Results demonstrate the advantage of MOGP especially for long data gaps, where optical-based methods notoriously fail. The leave-one-image-out assessment technique applied to the whole vegetation cover shows MOGP predictions improve standard GP estimations over short-time gaps (R 2 of 74% vs 68%, RMSE of 0.4 vs 0.44 [m 2 m −2 ]) and especially over long-time gaps (R 2 of 33% vs 12%, RMSE of 0.5 vs 1.09 [m 2 m −2 ]).
dc.language.iso eng
dc.relation.ispartof Remote Sensing of Environment, 2019, vol. 235, p. 1111452
dc.subject Processos estocàstics
dc.subject Teledetecció
dc.subject Imatges Processament
dc.title Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes
dc.type journal article es_ES
dc.date.updated 2020-12-09T14:05:01Z
dc.identifier.doi 10.1016/j.rse.2019.111452
dc.identifier.idgrec 137112
dc.rights.accessRights open access es_ES

Visualització       (20.43Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques