NAGIOS: RODERIC FUNCIONANDO

Synergistic integration of optical and microwave satellite data for crop yield estimation

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Synergistic integration of optical and microwave satellite data for crop yield estimation

Mostra el registre parcial de l'element

dc.contributor.author Mateo-Sanchis, Anna
dc.contributor.author Piles Guillem, Maria
dc.contributor.author Muñoz Marí, Jordi
dc.contributor.author Adsuara Fuster, José Enrique
dc.contributor.author Pérez Suay, Adrián
dc.contributor.author Camps-Valls, Gustau
dc.date.accessioned 2020-12-09T15:11:32Z
dc.date.available 2020-12-09T15:11:32Z
dc.date.issued 2019
dc.identifier.citation Mateo-Sanchis, Anna Piles Guillem, Maria Muñoz Marí, Jordi Adsuara Fuster, Jose Enrique Pérez Suay, Adrián Camps Valls, Gustavo 2019 Synergistic integration of optical and microwave satellite data for crop yield estimation Remote Sensing of Environment 234 111460
dc.identifier.uri https://hdl.handle.net/10550/76591
dc.description.abstract Developing accurate models of crop stress, phenology and productivity is of paramount importance, given the increasing need of food. Earth observation (EO) remote sensing data provides a unique source of information to monitor crops in a temporally resolved and spatially explicit way. In this study, we propose the combination of multisensor (optical and microwave) remote sensing data for crop yield estimation and forecasting using two novel approaches. We first propose the lag between Enhanced Vegetation Index (EVI) derived from MODIS and Vegetation Optical Depth (VOD) derived from SMAP as a new joint metric combining the information from the two satellite sensors in a unique feature or descriptor. Our second approach avoids summarizing statistics and uses machine learning to combine full time series of EVI and VOD. This study considers two statistical methods, a regularized linear regressionand its nonlinear extension called kernel ridge regression to directly estimate the county-level surveyed total production, as well as individual yields of the major crops grown in the region: corn, soybean and wheat. The study area includes the US Corn Belt, and we use agricultural survey data from the National Agricultural Statistics Service (USDA-NASS) for year 2015 for quantitative assessment. Results show that (1) the proposed EVI-VOD lag metric correlates well with crop yield and outperforms common single-sensor metrics for crop yield estimation; (2) the statistical (machine learning) models working directly with the time series largely improve results compared to previously reported estimations; (3) the combined exploitation of information from the optical and microwave data leads to improved predictions over the use of single sensor approaches with coefficient of determination R 2 ≥ 0.76; (4) when models are used for within-season forecasting with limited time information, crop yield prediction is feasible up to four months before harvest (models reach a plateau in accuracy); and (5) the robustness of the approach is confirmed in a multi-year setting, reaching similar performances than when using single-year data. In conclusion, results confirm the value of using both EVI and VOD at the same time, and the advantage of using automatic machine learning models for crop yield/production estimation.
dc.language.iso eng
dc.relation.ispartof Remote Sensing of Environment, 2019, vol. 234, num. 111460
dc.subject Teledetecció
dc.subject Processos estocàstics
dc.subject Imatges Processament
dc.title Synergistic integration of optical and microwave satellite data for crop yield estimation
dc.type journal article es_ES
dc.date.updated 2020-12-09T15:11:32Z
dc.identifier.doi 10.1016/j.rse.2019.111460
dc.identifier.idgrec 136985
dc.rights.accessRights open access es_ES

Visualització       (3.112Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques