NAGIOS: RODERIC FUNCIONANDO

Crop Yield Estimation and Interpretability With Gaussian Processes

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Crop Yield Estimation and Interpretability With Gaussian Processes

Mostra el registre parcial de l'element

dc.contributor.author Martínez-Ferrer, Laura
dc.contributor.author Piles Guillem, Maria
dc.contributor.author Camps-Valls, Gustau
dc.date.accessioned 2020-12-09T18:00:44Z
dc.date.available 2020-12-09T18:00:44Z
dc.date.issued 2020
dc.identifier.citation Martínez-Ferrer, Laura Piles Guillem, Maria Camps Valls, Gustavo 2020 Crop Yield Estimation and Interpretability With Gaussian Processes Ieee Geoscience And Remote Sensing Letters
dc.identifier.uri https://hdl.handle.net/10550/76597
dc.description.abstract This work introduces the use of Gaussian processes (GPs) for the estimation and understanding of crop development and yield using multisensor satellite observations and meteo- rological data. The proposed methodology combines synergistic information on canopy greenness, biomass, soil, and plant water content from optical and microwave sensors with the atmospheric variables typically measured at meteorological stations. A com- posite covariance is used in the GP model to account for varying scales, nonstationary, and nonlinear processes. The GP model reports noticeable gains in terms of accuracy with respect to other machine learning approaches for the estimation of corn, wheat, and soybean yields consistently for four years of data across continental U.S. (CONUS). Sparse GPs allow obtaining fast and compact solutions up to a limit, where heavy sparsity compromises the credibility of confidence intervals. We further study the GP interpretability by sensitivity analysis, which reveals that remote sensing parameters accounting for soil moisture and greenness mainly drive the model predictions. GPs finally allow us to identify climate extremes and anomalies impacting crop productivity and their associated drivers.
dc.language.iso eng
dc.relation.ispartof Ieee Geoscience And Remote Sensing Letters, 2020
dc.subject Processos estocàstics
dc.subject Productivitat agrícola
dc.title Crop Yield Estimation and Interpretability With Gaussian Processes
dc.type journal article es_ES
dc.date.updated 2020-12-09T18:00:44Z
dc.identifier.doi 10.1109/LGRS.2020.3016140
dc.identifier.idgrec 141776
dc.rights.accessRights open access es_ES

Visualització       (1.442Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques