NAGIOS: RODERIC FUNCIONANDO

Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times

Mostra el registre parcial de l'element

dc.contributor.author Castro Palacio, Juan Carlos
dc.contributor.author Isidro San Juan, José María
dc.contributor.author Navarro Pardo, Esperanza
dc.contributor.author Velázquez Abad, Luisberis
dc.contributor.author Fernández de Córdoba, Pedro
dc.date.accessioned 2021-02-04T16:44:21Z
dc.date.available 2021-02-04T16:44:21Z
dc.date.issued 2021
dc.identifier.citation Castro Palacio, Juan Carlos Isidro San Juan, José María Navarro Pardo, Esperanza Velázquez Abad, Luisberis Fernández de Córdoba, Pedro 2021 Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times Mathematics 9 77
dc.identifier.uri https://hdl.handle.net/10550/77602
dc.description.abstract The Chi distribution is a continuous probability distribution of a random variable obtained from the positive square root of the sum of k squared variables, each coming from a standard Normal distribution (mean = 0 and variance = 1). The variable k indicates the degrees of freedom. The usual expression for the Chi distribution can be generalised to include a parameter which is the variance (which can take any value) of the generating Gaussians. For instance, for k = 3, we have the case of the Maxwell-Boltzmann (MB) distribution of the particle velocities in the Ideal Gas model of Physics. In this work, we analyse the case of unequal variances in the generating Gaussians whose distribution we will still represent approximately in terms of a Chi distribution. We perform a Monte Carlo simulation to generate a random variable which is obtained from the positive square root of the sum of k squared variables, but this time coming from non-standard Normal distributions, where the variances can take any positive value. Then, we determine the boundaries of what to expect when we start from a set of unequal variances in the generating Gaussians. In the second part of the article, we present a discrete model to calculate the parameter of the Chi distribution in an approximate way for this case (unequal variances). We also comment on the application of this simple discrete model to calculate the parameter of the MB distribution (Chi of k = 3) when it is used to represent the reaction times to visual stimuli of a collective of individuals in the framework of a Physics inspired model we have published in a previous work.
dc.language.iso eng
dc.relation.ispartof Mathematics, 2021, vol. 9, p. 77
dc.subject Psicologia
dc.title Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times
dc.type journal article es_ES
dc.date.updated 2021-02-04T16:44:21Z
dc.identifier.doi 10.3390/math9010077
dc.identifier.idgrec 143152
dc.rights.accessRights open access es_ES

Visualització       (1.492Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques