NAGIOS: RODERIC FUNCIONANDO

A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance

Mostra el registre parcial de l'element

dc.contributor.author Tenjo Gil, Nancy Carolina
dc.contributor.author Ruiz-Verdú, Antonio
dc.contributor.author Van Wittenberghe, Shari
dc.contributor.author Delegido Gómez, Jesús
dc.contributor.author Moreno Méndez, José F.
dc.date.accessioned 2021-04-29T14:09:03Z
dc.date.available 2021-04-29T14:09:03Z
dc.date.issued 2021
dc.identifier.citation Tenjo Gil, Nancy Carolina Ruiz-Verdú, Antonio Van Wittenberghe, Shari Delegido Gómez, Jesús Moreno Méndez, José F. 2021 A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance Remote Sensing 13 2 329
dc.identifier.uri https://hdl.handle.net/10550/78980
dc.description.abstract Sun induced chlorophyll fluorescence (SICF) emitted by phytoplankton provides considerable insights into the vital role of the carbon productivity of the earth's aquatic ecosystems. However, the SICF signal leaving a water body is highly affected by the high spectral variability of its optically active constituents. To disentangle the SICF emission from the water-leaving radiance, a new high spectral resolution retrieval algorithm is presented, which significantly improves the fluorescence line height (FLH) method commonly used so far. The proposed algorithm retrieves the reflectance without SICF contribution by the extrapolation of the reflectance from the adjacent regions. Then, the SICF emission curve is obtained as the difference of the reflectance with SICF, the one actually obtained by any remote sensor (apparent reflectance), and the reflectance without SICF, the one estimated by the algorithm (true reflectance). The algorithm first normalizes the reflectance spectrum at 780 nm, following the similarity index approximation, to minimize the variability due to other optically active constituents different from chlorophyll. Then, the true reflectance is estimated empirically from the normalized reflectance at three wavelengths using a machine learning regression algorithm (MLRA) and a cubic spline fitting adjustment. Two large reflectance databases, representing a wide range of coastal and ocean water components and scattering conditions, were independently simulated with the radiative transfer model HydroLight and used for training and validation of the MLRA fitting strategy. The best results for the high spectral resolution SICF retrieval were obtained using support vector regression, with relative errors lower than 2% for the SICF peak value in 81% of the samples. This represents a significant improvement with respect to the classic FLH algorithm, applied for OLCI bands, for which the relative errors were higher than 40% in 59% of the samples.
dc.language.iso eng
dc.relation.ispartof Remote Sensing, 2021, vol. 13, num. 2, p. 329
dc.subject Teledetecció
dc.subject Fluorescència
dc.subject Aigua Qualitat
dc.title A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance
dc.type journal article es_ES
dc.date.updated 2021-04-29T14:09:04Z
dc.identifier.doi 10.3390/rs13020329
dc.identifier.idgrec 146329
dc.rights.accessRights open access es_ES

Visualització       (5.510Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques