NAGIOS: RODERIC FUNCIONANDO

Exploiting clock transitions for the chemical design of resilient molecular spin qubits

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Exploiting clock transitions for the chemical design of resilient molecular spin qubits

Mostra el registre parcial de l'element

dc.contributor.author Giménez-Santamarina, Silvia
dc.contributor.author Cardona Serra, Salvador
dc.contributor.author Clemente Juan, Juan Modesto
dc.contributor.author Gaita Ariño, Alejandro
dc.contributor.author Coronado Miralles, Eugenio
dc.date.accessioned 2021-05-26T14:22:20Z
dc.date.available 2021-05-26T14:22:20Z
dc.date.issued 2020
dc.identifier.citation Giménez-Santamarina, Silvia Cardona Serra, Salvador Clemente Juan, Juan Modesto Gaita Ariño, Alejandro Coronado Miralles, Eugenio 2020 Exploiting clock transitions for the chemical design of resilient molecular spin qubits Chemical Science 11 39 10718 10728
dc.identifier.uri https://hdl.handle.net/10550/79456
dc.description.abstract Molecular spin qubits are chemical nanoobjects with promising applications that are so far hampered by the rapid loss of quantum information, a process known as decoherence. A strategy to improve this situation involves employing so-called Clock Transitions (CTs), which arise at anticrossings between spin energy levels. At CTs, the spin states are protected from magnetic noise and present an enhanced quantum coherence. Unfortunately, these optimal points are intrinsically hard to control since their transition energy cannot be tuned by an external magnetic field; moreover, their resilience towards geometric distortions has not yet been analyzed. Here we employ a python-based computational tool for the systematic theoretical analysis and chemical optimization of CTs. We compare three relevant case studies with increasingly complex ground states. First, we start with vanadium(IV)-based spin qubits, where the avoided crossings are controlled by hyperfine interaction and find that these S ¼ 1/2 systems are very promising, in particular in the case of vanadyl complexes in an L-band pulsed EPR setup. Second, we proceed with a study of the effect of symmetry distortions in a holmium polyoxotungstate of formula [Ho(W5O18)2]9 where CTs had already been experimentally demonstrated. Here we determine the relative importance of the different structural distortions that causes the anticrossings. Third, we study the most complicated case, a polyoxopalladate cube [HoPd12(AsPh)8O32]5 which presents an unusually rich ground spin multiplet. This system allows us to find uniquely favorable CTs that could nevertheless be accessible with standard pulsed EPR equipment (X-band or Q-band) after a suitable chemical distortion to break the perfect cubic symmetry. Since anticrossings and CTs constitute a rich source of physical phenomena in very different kinds of quantum systems, the generalization of this study is expected to have impact not only in molecular spin science but also in other related fields such as molecular photophysics and photochemistry.
dc.language.iso eng
dc.relation.ispartof Chemical Science, 2020, vol. 11, num. 39, p. 10718-10728
dc.subject Quàntums, Teoria dels
dc.subject Química
dc.title Exploiting clock transitions for the chemical design of resilient molecular spin qubits
dc.type journal article es_ES
dc.date.updated 2021-05-26T14:22:20Z
dc.identifier.doi 10.1039/D0SC01187H
dc.identifier.idgrec 139126
dc.rights.accessRights open access es_ES

Visualització       (1.018Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques