NAGIOS: RODERIC FUNCIONANDO

Polymer-Based Composites for Engineering Organic Memristive Devices

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Polymer-Based Composites for Engineering Organic Memristive Devices

Mostra el registre parcial de l'element

dc.contributor.author Prado-Socorro, Carlos D.
dc.contributor.author Giménez-Santamarina, Silvia
dc.contributor.author Mardegan, Lorenzo
dc.contributor.author Escalera Moreno, Luis
dc.contributor.author Bolink, Henk
dc.contributor.author Cardona Serra, Salvador
dc.contributor.author Coronado Miralles, Eugenio
dc.date.accessioned 2022-04-13T12:49:52Z
dc.date.available 2022-04-13T12:49:52Z
dc.date.issued 2022
dc.identifier.citation Prado-Socorro, Carlos D. Giménez-Santamarina, Silvia Mardegan, Lorenzo Escalera Moreno, Luis Bolink, Henk Cardona Serra, Salvador Coronado Miralles, Eugenio 2022 Polymer-Based Composites for Engineering Organic Memristive Devices Advanced Electronic Materials 2101192 1 8
dc.identifier.uri https://hdl.handle.net/10550/82341
dc.description.abstract Memristive materials play a key role in the development of neuromorphic technology given that they can combine information processing with volatile or nonvolatile memory storage in a single computational component. Both functionalities are strictly required for the design and implementation of neuromorphic circuits. Many of these bioinspired materials emulate the characteristics of memory and learning processes that happen in the brain. The memristive properties of a two-terminal (2-T) organic device based on ionic migration mediated by an ion-transport polymer are reported here. The material possesses unique memristive properties: it is reversibly switchable, shows tens of conductive states, presents Hebbian learning demonstrated by spiking time dependent plasticity, and behaves with both short- and long-term memory in a single device. The origin and synergy of both learning phenomena are theoretically explained by means of the chemical interaction between ionic electrolytes and the ion-conductive mediator. Further discussion on the transport mechanism is included to explain the dynamic behavior of these ionic devices under a variable electric field. This polymer-based composite as an outstanding neuromorphic material is proposed for being tunable, cheap, flexible, easy to process, reproducible, and more biocompatible than their inorganic analogs.
dc.language.iso eng
dc.relation.ispartof Advanced Electronic Materials, 2022, num. 2101192 , p. 1-8
dc.subject Materials
dc.subject Semiconductors orgànics
dc.subject Electroquímica
dc.title Polymer-Based Composites for Engineering Organic Memristive Devices
dc.type journal article es_ES
dc.date.updated 2022-04-13T12:49:52Z
dc.identifier.doi 10.1002/aelm.202101192
dc.identifier.idgrec 149985
dc.rights.accessRights open access es_ES

Visualització       (1.714Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques