NAGIOS: RODERIC FUNCIONANDO

Machine Learning-Based View Synthesis in Fourier Lightfield Microscopy

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Machine Learning-Based View Synthesis in Fourier Lightfield Microscopy

Mostra el registre parcial de l'element

dc.contributor.author Rostan, Julen
dc.contributor.author Incardona, Nicolò
dc.contributor.author Sánchez Ortiga, Emilio
dc.contributor.author Martínez Corral, Manuel
dc.contributor.author Latorre-Carmona, Pedro
dc.date.accessioned 2022-05-05T13:53:00Z
dc.date.available 2022-05-05T13:53:00Z
dc.date.issued 2022
dc.identifier.citation Rostan, Julen Incardona, Nicolò Sánchez Ortiga, Emilio Martínez Corral, Manuel Latorre-Carmona, Pedro 2022 Machine Learning-Based View Synthesis in Fourier Lightfield Microscopy Sensors 22 3487
dc.identifier.uri https://hdl.handle.net/10550/82619
dc.description.abstract Current interest in Fourier lightfield microscopy is increasing, due to its ability to acquire 3D images of thick dynamic samples. This technique is based on simultaneously capturing, in a single shot, and with a monocular setup, a number of orthographic perspective views of 3D microscopic samples. An essential feature of Fourier lightfield microscopy is that the number of acquired views is low, due to the trade-off relationship existing between the number of views and their corresponding lateral resolution. Therefore, it is important to have a tool for the generation of a high number of synthesized view images, without compromising their lateral resolution. In this context we investigate here the use of a neural radiance field view synthesis method, originally developed for its use with macroscopic scenes acquired with a moving (or an array of static) digital camera(s), for its application to the images acquired with a Fourier lightfield microscope. The results obtained and presented in this paper are analyzed in terms of lateral resolution and of continuous and realistic parallax. We show that, in terms of these requirements, the proposed technique works efficiently in the case of the epi-illumination microscopy mode.
dc.language.iso eng
dc.relation.ispartof Sensors, 2022, vol. 22, num. 3487
dc.subject Microscòpia
dc.subject Fourier, Anàlisi de
dc.title Machine Learning-Based View Synthesis in Fourier Lightfield Microscopy
dc.type journal article es_ES
dc.date.updated 2022-05-05T13:53:00Z
dc.identifier.doi 10.3390/s22093487
dc.identifier.idgrec 152417
dc.rights.accessRights open access es_ES

Visualització       (15.29Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques