|
Neuroblastoma (NB) is the most common extra-cranial malignancy in preschool children. To portray the genetic landscape of an overly aggressive NB leading to a rapid clinical progression of the disease, tumor DNA collected pre- and post-treatment has been analyzed. Array comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and pharmacogenetics approaches, respectively, have identified relevant copy number alterations (CNAs), single nucleotide variants (SNVs), and polymorphisms (SNPs) that were then combined into an integrated analysis. Spontaneously formed 3D tumoroids obtained from the recurrent mass have also been characterized. The results prove the power of combining CNAs, SNVs, and SNPs analyses to assess clonal evolution during the disease progression by evidencing multiple clones at disease onset and dynamic genomic alterations during therapy administration. The proposed molecular and cytogenetic integrated analysis empowers the disease follow-up and the prediction of tumor recurrence.
|