Mostra el registre parcial de l'element
dc.contributor.author | Bretó Martínez, Carles | |
dc.contributor.author | Espinosa, Priscila | |
dc.contributor.author | Hernández, Penélope | |
dc.contributor.author | Pavía Miralles, José Manuel | |
dc.date.accessioned | 2022-05-25T14:54:19Z | |
dc.date.available | 2022-05-25T14:54:19Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Bretó Martínez, Carles Espinosa, Priscila Hernández, Penélope Pavía Miralles, José Manuel 2019 An entropy-based machine learning algorithm for combining macroeconomic forecasts Entropy 21 10 | |
dc.identifier.uri | https://hdl.handle.net/10550/82980 | |
dc.description.abstract | This paper applies a Machine Learning approach with the aim of providing a single aggregated prediction from a set of individual predictions. Departing from the well-known maximum-entropy inference methodology, a new factor capturing the distance between the true and the estimated aggregated predictions presents a new problem. Algorithms such as ridge, lasso or elastic net help in finding a new methodology to tackle this issue. We carry out a simulation study to evaluate the performance of such a procedure and apply it in order to forecast and measure predictive ability using a dataset of predictions on Spanish gross domestic product. | |
dc.language.iso | eng | |
dc.relation.ispartof | Entropy, 2019, vol. 21, num. 10 | |
dc.subject | Economia matemàtica | |
dc.subject | Macroeconomia | |
dc.subject | Tecnologia | |
dc.title | An entropy-based machine learning algorithm for combining macroeconomic forecasts | |
dc.type | journal article | es_ES |
dc.date.updated | 2022-05-25T14:54:20Z | |
dc.identifier.doi | 10.3390/e21101015 | |
dc.identifier.idgrec | 135757 | |
dc.rights.accessRights | open access | es_ES |