Mostra el registre complet de l'element
Chin, Sang Hyun
Bolink, Henk (dir.); Sessolo, Michele (dir.) Institut de Ciència Molecular |
|
Aquest document és un/a tesi, creat/da en: 2022 | |
In last decade, halide perovskites have attracted considerable attention and a remarkable progress in their application to optoelectronic devices has been accomplished. In light-emitting applications, the emission peak can be tuned by halide anion exchange, and the width of emission is the narrowest among the emerging materials in the market. Since the use of display systems is becoming ubiquitous, developing cost-effective light-emitting materials and devices is indispensable.
In chapter 2, a down-conversion light-emitter is realized by mixing lead bromide and polyethylene glycol in a one-pot synthesis. This mixture shows a photoluminescent quantum yield of 23% with emission peak at 610 nm. The emission colour is tunable by introducing alkylammonium halides. To achieve white emissions for lighting, equimolar amount of lead bromide and tetrabutylammonium bromide are dissolved for yello...
[Llegir més ...]
[-]
In last decade, halide perovskites have attracted considerable attention and a remarkable progress in their application to optoelectronic devices has been accomplished. In light-emitting applications, the emission peak can be tuned by halide anion exchange, and the width of emission is the narrowest among the emerging materials in the market. Since the use of display systems is becoming ubiquitous, developing cost-effective light-emitting materials and devices is indispensable.
In chapter 2, a down-conversion light-emitter is realized by mixing lead bromide and polyethylene glycol in a one-pot synthesis. This mixture shows a photoluminescent quantum yield of 23% with emission peak at 610 nm. The emission colour is tunable by introducing alkylammonium halides. To achieve white emissions for lighting, equimolar amount of lead bromide and tetrabutylammonium bromide are dissolved for yellow emission which could be completed with a blue emissive dye.
In chapter 3, light-emitting electrochemical cells (LECs) are developed with a CsPbBr3 perovskite embedded in polyethylene oxide (PEO). The perovskite-polymer precursors are dissolved in dimethyl sulfoxide and spin-coated between two electrodes, resulting in high luminance (2200 cd/m2). Also, in an ion interdiffusion study with heterojunctions (Cs4PbCl6/CsPbBr3 and CsPbCl3/CsPbBr3), Cs4PbCl6 showed less halide anion mobility. Exploiting this point, LECs employing Cs4PbCl6 are fabricated and characterized. By sandwiching the CsPbBr3:PEO in between Cs4PbCl6 layers, a two-fold increase in device stability was obtained.
In chapter 4, a co-evaporated halide perovskite material, CsPbCl3, is used as a hole transport layer in organic light emitting diodes. First, the perovskite film is passivated by CsCl at the interfaces. This modified perovskite hole transport layer is used in phosphorescent organic light emitting diodes comprising ultrathin undoped iridium complex. Importantly, employing ultrathin emissive layer can reduce the material-cost by almost 70 %. However, since such thin devices are prone to have high leakage currents, thick perovskite layers are inserted to overcome this issue. As a result, a device comprising a 200 nm thick perovskite hole transport layer and a light-emitting lridium complex with nominal thickness of 0.05 nm, reached an efficiency of 31 cd/A, whereas the efficiency of a co-evaporated reference counterpart is 20 cd/A.
The work presented in this thesis, demonstrates several strategies to develop cost-effective light emitters. It is shown that perovskites are promising candidates for down-converters, LECs, and charge transport materials. Hence, this might contribute to the realization of cost-effective light-emitters and to the large area production of perovskite-based display in the Internet-of-Things era.En la última década, las perovskitas de haluros han atraído una gran atención y se ha logrado un progreso notable en aplicaciones optoelectrónicas. En aplicaciones de emisión de luz, el pico de emisión se puede ajustar mediante el intercambio de aniones de haluros, y el ancho del pico es el más estrecho entre los materiales emergentes del mercado.
En el capítulo 2, se realiza un fósforo luminiscente mediante interacción de bromuro de plomo con polietilenglicol, mediante síntesis en un solo paso. Este compuesto muestra un rendimiento cuántico fotoluminiscente del 23 % con un pico de emisión a 610 nm. El color de emisión se puede ajustar mediante la introducción de haluros de alquilamonio. Para lograr luz blanca para iluminación, se disuelven cantidades equimolares de bromuro de plomo y bromuro de tetrabutilamonio, obteniendo emisión amarilla que puede completarse con un colorante azul.
En el capítulo 3, se desarrollan celdas electroquímicas emisoras de luz (LEC) con una perovskita de tipo CsPbBr3 mezclada con óxido de polietileno (PEO), que resulta en una alta luminancia (2200 cd/m2). Además, en un estudio de difusión de iones al interfaz entre diferentes materiales (Cs4PbCl6/CsPbBr3 y CsPbCl3/CsPbBr3), identificamos Cs4PbCl6 por su menor movilidad iónica. Al incorporarlo encima de las capas de CsPbBr3:PEO, se obtuvo un aumento de hasta el doble en la estabilidad del dispositivo.
En el capítulo 4, se utiliza un material de perovskita de haluro coevaporado, CsPbCl3, como capa de transporte de huecos en diodos orgánicos emisores de luz (OLEDs). Esta capa de transporte de agujeros de perovskita modificada se utiliza en OLEDs fosforescentes que incluyen un complejo de iridio ultrafino. Es importante destacar que el empleo de una capa emisora ultrafina puede reducir el coste del material en casi un 70%. Dado que dispositivos tan delgados son propensos a tener altas corrientes de fuga, se insertan capas gruesas de perovskita para paliar este problema. Usando una capa de transporte de perovskita de 200 nm de espesor y un complejo de iridio emisor de luz ultrafino, se alcanzan eficiencias de hasta 31 cd/A.
El trabajo presentado en esta tesis presenta varias estrategias para desarrollar emisores de luz novedosos. Se muestra como las perovskitas son candidatas prometedoras para fósforos, LECs y como material de transporte de carga. Por lo tanto, esto podría ayudar en la realización de emisores de luz eficientes y baratos, para aplicaciones en pantallas planas y sistemas de señalización.
|
|
Veure al catàleg Trobes |