NAGIOS: RODERIC FUNCIONANDO

Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions

Mostra el registre parcial de l'element

dc.contributor.author Cervera Montesinos, Javier
dc.contributor.author Meseguer, Salvador
dc.contributor.author Levin, Michael
dc.contributor.author Mafé, Salvador
dc.date.accessioned 2023-01-16T19:48:45Z
dc.date.available 2023-01-16T19:48:45Z
dc.date.issued 2020
dc.identifier.citation Cervera Montesinos, Javier Meseguer, Salvador Levin, Michael Mafé, Salvador 2020 Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions Bioelectrochemistry 132 107410-1 107410-12
dc.identifier.uri https://hdl.handle.net/10550/84983
dc.description.abstract Robust control of anterior-posterior axial patterning during regeneration is mediated by bioelectric signaling. However, a number of systems-level properties of bioelectrochemical circuits, including stochastic outcomes such as seen in permanently de-stabilized "cryptic" flatworms, are not completely understood. We present a bioelectrical model for head-tail patterning that combines single-cell characteristics such as membrane ion channels with multicellular community effects via voltage-gated gap junctions. It complements the biochemically-focused models by describing the effects of intercellular electrochemical coupling, cutting plane, and gap junction blocking of the multicellular ensemble. We provide qualitative insights into recent experiments concerning planarian anterior/posterior polarity by showing that: (i) bioelectrical signals can help separated cell domains to know their relative position after injury and contribute to the transitions between the abnormal double-head state and the normal head-tail state; (ii) the bioelectrical phase-space of the system shows a bi-stability region that can be interpreted as the cryptic system state; and (iii) context-dependent responses are obtained depending on the cutting plane position, the initial bioelectrical state of the multicellular system, and the intercellular connectivity. The model reveals how simple bioelectric circuits can exhibit complex tissue-level patterning and suggests strategies for regenerative control in vivo and in synthetic biology contexts.
dc.language.iso eng
dc.relation.ispartof Bioelectrochemistry, 2020, vol. 132, p. 107410-1-107410-12
dc.subject Bioquímica
dc.subject Cèl·lules
dc.title Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions
dc.type journal article es_ES
dc.date.updated 2023-01-16T19:48:46Z
dc.identifier.doi 10.1016/j.bioelechem.2019.107410
dc.identifier.idgrec 141744
dc.rights.accessRights open access es_ES

Visualització       (1.075Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques