NAGIOS: RODERIC FUNCIONANDO

The manipulation of Euribor: An analysis with machine learning classification techniques

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

The manipulation of Euribor: An analysis with machine learning classification techniques

Mostra el registre parcial de l'element

dc.contributor.author Herrera, Rubén
dc.contributor.author Climent Diranzo, Francisco José
dc.contributor.author Carmona Ibáñez, Pedro
dc.contributor.author Momparler Pechuan, Alexandre
dc.date.accessioned 2023-04-04T07:41:38Z
dc.date.available 2023-04-05T04:45:05Z
dc.date.issued 2022 es_ES
dc.identifier.citation Rubén Herrera, Francisco Climent, Pedro Carmona, Alexandre Momparler, The manipulation of Euribor: An analysis with machine learning classification techniques, Technological Forecasting and Social Change, Volume 176, 2022, es_ES
dc.identifier.uri https://hdl.handle.net/10550/86018
dc.description.abstract The manipulation of the Euro Interbank Offered Rate (Euribor) was an affair which had a great impact on in ternational financial markets. This study tests whether advanced data processing techniques are capable of classifying Euribor panel banks as either manipulating or non-manipulating on the basis of patterns found in quotes submissions. For this purpose, panel banks’ daily contributions have been studied and monthly variables obtained that denote different contribution patterns for Euribor panel banks. Thus, in accordance with the court verdict, banks are categorized as manipulating and non-manipulating and Machine Learning classification techniques such as Supervised Learning, Anomaly Detection and Cluster Analysis are applied in order to discriminate between convicted and acquitted banks. The results show that out of seven manipulative banks, five are detected by Machine Learning using Deep Learning algorithms, all five presenting very similar contribution patterns. This is consistent with Anomaly Detection which confirms that several manipulating banks present similar levels of abnormality in their contributions. In addition, the Cluster Analysis facilitates gathering the five most active banks in illicit actions. In conclusion, administrators and supervisors might find these techniques useful to detect potentially illicit actions by banks involved in the Euribor rate-setting process. es_ES
dc.language.iso en es_ES
dc.publisher Elsevier es_ES
dc.subject euribor es_ES
dc.subject rate-fixing es_ES
dc.subject manipulation es_ES
dc.subject collusion es_ES
dc.subject panel bank es_ES
dc.subject machine learning es_ES
dc.subject classification es_ES
dc.title The manipulation of Euribor: An analysis with machine learning classification techniques es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS ECONÓMICAS es_ES
dc.identifier.doi 10.1016/j.techfore.2021.121466. es_ES
dc.accrualmethod S es_ES
dc.embargo.terms 0 days es_ES

Visualització       (2.332Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques