NAGIOS: RODERIC FUNCIONANDO

Analysis of longitudinal metabolomic data using multivariate curve resolution-alternating least squares and pathway analysis

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Analysis of longitudinal metabolomic data using multivariate curve resolution-alternating least squares and pathway analysis

Mostra el registre parcial de l'element

dc.contributor.author Ten Doménech, Isabel
dc.contributor.author Moreno Torres, Marta
dc.contributor.author Sanjuan Herráez, Juan Daniel
dc.contributor.author Pérez Guaita, David
dc.contributor.author Quintás Soriano, Guillermo
dc.contributor.author Kuligowski. Julia
dc.date.accessioned 2023-05-19T15:03:36Z
dc.date.available 2023-05-19T15:03:36Z
dc.date.issued 2023
dc.identifier.citation Ten Doménech, Isabel Moreno Torres, Marta Sanjuan Herráez, Juan Daniel Pérez Guaita, David Quintás Soriano, Guillermo Kuligowski. Julia 2023 Analysis of longitudinal metabolomic data using multivariate curve resolution-alternating least squares and pathway analysis Chemometrics and Intelligent Laboratory Systems 232
dc.identifier.uri https://hdl.handle.net/10550/86735
dc.description.abstract Extraction of meaningful biological information from longitudinal metabolomic studies is a major challenge and typically involves multivariate analysis and dimensional reduction methods for data visualization such as Principal Component Analysis or Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Besides, a variety of computational tools have been developed to identify changes in metabolic pathways including functional analysis and pathway analysis. In this work, the joint analysis of results from MCR-ALS and metabolic pathway analysis is proposed to facilitate the interpretation of dynamic changes in longitudinal metabolomic data. The strategy is based on the use of MCR-ALS to remove unstructured random variation in the raw data, thus facilitating the interpretation of dynamic changes observed by metabolic pathway analysis over time. A simulated data set representing dynamic longitudinal changes in the intensities of a subset of metabolites from three metabolic pathways was initially used to test the applicability of MCR-ALS to support pathway analysis for detecting pathway perturbations. Then, the strategy is applied to real data acquired for the analysis of changes during CD8+ T cell activation. Results obtained show that MCR-ALS facilitates the interpretation of longitudinal metabolomic profiles in multivariate data sets by identifying metabolic pathways associated with each detected dynamic component.
dc.language.iso eng
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems, 2023, num. 232
dc.subject Biologia
dc.title Analysis of longitudinal metabolomic data using multivariate curve resolution-alternating least squares and pathway analysis
dc.type journal article
dc.date.updated 2023-05-19T15:03:37Z
dc.identifier.doi 10.1016/j.chemolab.2022.104720
dc.identifier.idgrec 158848
dc.rights.accessRights open access

Visualització       (8.468Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques