NAGIOS: RODERIC FUNCIONANDO

Machine Learning-Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Machine Learning-Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes

Mostra el registre complet de l'element

Visualització       (823.8Kb)

   
    
Tang, Siyi; Razeghi, Orod; Kapoor, Ridhima; Alhusseini, Mahmood I.; Fazal, Muhammad; Rogers, A. J.; Rodrigo Bort, Miguel; Clopton, Paul; Wang Jiyou, Paul; Rubin, Daniel L.
Aquest document és un/a article, creat/da en: 2022

Background: Machine learning is a promising approach to personalize atrial fibrillation management strategies for patients after catheter ablation. Prior atrial fibrillation ablation outcome prediction studies applied classical machine learning methods to hand-crafted clinical scores, and none have leveraged intracardiac electrograms or 12-lead surface electrocardiograms for outcome prediction. We hypothesized that (1) machine learning models trained on electrograms or electrocardiogram (ECG) signals can perform better at predicting patient outcomes after atrial fibrillation ablation than existing clinical scores and (2) multimodal fusion of electrogram, ECG, and clinical features can further improve the prediction of patient outcomes.
Veure al catàleg Trobes

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre complet de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques