NAGIOS: RODERIC FUNCIONANDO

Atrial fibrillation signatures on intracardiac electrograms identified by deep learning

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Atrial fibrillation signatures on intracardiac electrograms identified by deep learning

Mostra el registre parcial de l'element

dc.contributor.author Rodrigo Bort, Miguel
dc.contributor.author Alhusseini, Mahmood I.
dc.contributor.author Rogers, A. J.
dc.contributor.author Krittanawong, Chayakrit
dc.contributor.author Thakur, Sumiran
dc.contributor.author Feng, Ruibin
dc.contributor.author Ganesan, Prasanth
dc.contributor.author Narayan, Sanjiv M.
dc.date.accessioned 2023-05-22T14:46:05Z
dc.date.available 2023-05-22T14:46:05Z
dc.date.issued 2022
dc.identifier.citation Rodrigo Bort, Miguel Alhusseini, Mahmood I. Rogers, A. J. Krittanawong, Chayakrit Thakur, Sumiran Feng, Ruibin Ganesan, Prasanth Narayan, Sanjiv M. 2022 Atrial fibrillation signatures on intracardiac electrograms identified by deep learning Computers in Biology and Medicine 145
dc.identifier.uri https://hdl.handle.net/10550/86826
dc.description.abstract Automatic detection of atrial fibrillation (AF) by cardiac devices is increasingly common yet suboptimally groups AF, flutter or tachycardia (AT) together as 'high rate events'. This may delay or misdirect therapy. Objective: We hypothesized that deep learning (DL) can accurately classify AF from AT by revealing electrogram (EGM) signatures. Methods: We studied 86 patients in whom the diagnosis of AF or AT was established at electrophysiological study (25 female, 65 ± 11 years). Custom DL architectures were trained to identify AF using N = 29,340 unipolar and N = 23,760 bipolar EGM segments. We compared DL to traditional classifiers based on rate or regularity. We explained DL using computer models to assess the impact of controlled variations in shape, rate and timing on AF/AT classification in 246,067 EGMs reconstructed from clinical data. Results: DL identified AF with AUC of 0.97 ± 0.04 (unipolar) and 0.92 ± 0.09 (bipolar). Rule-based classifiers misclassified ∼10-12% of cases. DL classification was explained by regularity in EGM shape (13%) or timing (26%), and rate (60%; p < 0.001), and also by a set of unipolar EGM shapes that classified as AF independent of rate or regularity. Overall, the optimal AF 'fingerprint' comprised these specific EGM shapes, >15% timing variation, <0.48 correlation in beat-to-beat EGM shapes and CL < 190 ms (p < 0.001). Conclusions: Deep learning of intracardiac EGMs can identify AF or AT via signatures of rate, regularity in timing or shape, and specific EGM shapes. Future work should examine if these signatures differ between different clinical subpopulations with AF.
dc.language.iso eng
dc.relation.ispartof Computers in Biology and Medicine, 2022, vol. 145
dc.subject Tecnologia
dc.subject Sistema cardiovascular
dc.title Atrial fibrillation signatures on intracardiac electrograms identified by deep learning
dc.type journal article
dc.date.updated 2023-05-22T14:46:06Z
dc.identifier.doi 10.1016/j.compbiomed.2022.105451
dc.identifier.idgrec 158806
dc.rights.accessRights open access

Visualització       (6.889Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques