NAGIOS: RODERIC FUNCIONANDO

Deep Learning Architectures for Diagnosis of Diabetic Retinopathy

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Deep Learning Architectures for Diagnosis of Diabetic Retinopathy

Mostra el registre parcial de l'element

dc.contributor.author Martínez Sober, Marcelino
dc.contributor.author Solano, Alberto
dc.contributor.author Dietrich, Kevin N.
dc.contributor.author Barranquero Cardeñosa, Regino
dc.contributor.author Vila Tomás, Jorge
dc.contributor.author Hernández Cámara, Pablo
dc.date.accessioned 2023-05-23T07:30:02Z
dc.date.available 2023-05-23T07:30:02Z
dc.date.issued 2023
dc.identifier.citation Martínez Sober, Marcelino Solano, Alberto Dietrich, Kevin N. Barranquero Cardeñosa, Regino Vila Tomás, Jorge Hernández Cámara, Pablo 2023 Deep Learning Architectures for Diagnosis of Diabetic Retinopathy Applied Sciences 13 7 1 14
dc.identifier.uri https://hdl.handle.net/10550/86831
dc.description.abstract For many years, convolutional neural networks dominated the field of computer vision, not least in the medical field, where problems such as image segmentation were addressed by such networks as the U-Net. The arrival of self-attention-based networks to the field of computer vision through ViTs seems to have changed the trend of using standard convolutions. Throughout this work, we apply different architectures such as U-Net, ViTs and ConvMixer, to compare their performance on a medical semantic segmentation problem. All the models have been trained from scratch on the DRIVE dataset and evaluated on their private counterparts to assess which of the models performed better in the segmentation problem. Our major contribution is showing that the best-performing model (ConvMixer) is the one that shares the approach from the ViT (processing images as patches) while maintaining the foundational blocks (convolutions) from the U-Net. This mixture does not only produce better results (DICE=0.83) than both ViTs (0.80/0.077 for UNETR/SWIN-Unet) and the U-Net (0.82) on their own but reduces considerably the number of parameters (2.97M against 104M/27M and 31M, respectively), showing that there is no need to systematically use large models for solving image problems where smaller architectures with the optimal pieces can get better results.
dc.relation.ispartof Applied Sciences, 2023, vol. 13, num. 7, p. 1-14
dc.subject Física
dc.subject Enginyeria biomèdica
dc.subject Enginyeria
dc.title Deep Learning Architectures for Diagnosis of Diabetic Retinopathy
dc.type journal article
dc.date.updated 2023-05-23T07:30:03Z
dc.identifier.doi 10.3390/app13074445
dc.identifier.idgrec 158967
dc.rights.accessRights open access

Visualització       (5.606Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques