Suspected-screening assessment of the occurrence of organic compounds in sewage sludge
Mostra el registre complet de l'element
Visualització
(6.408Mb)
|
|
|
|
|
|
Cuñat, Alejandro; Álvarez Ruiz, Rodrigo; Morales Suárez-Varela, María M.; Picó García, Yolanda
|
|
Aquest document és un/a article, creat/da en: 2022
|
|
|
|
The profiling of emerging organic pollutants present in sludge and generated during wastewater treatment is much more limited than in water. This is mainly due to the difficulty of sludge analysis because of its high content of organic matter and interfering compounds. In this study, a generic extraction method using a mixture of buffered water (pH 4.1) and solid phase extraction (SPE) clean-up was applied to samples of sludge obtained in different treatment plants. This extraction was followed by determination of the contaminants by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS), using suspected screening to detect the most relevant organic compounds that access the environment through sludge application. This screening (including >3000 substances, such as, pharmaceuticals, pesticides, metabolites and industrial chemicals) tentatively identified 122 compound and assigned most probable structure to 39. The set of compounds assigned to a probable structure was increased in 14 compounds by searching in a free database of metabolites. Fifteen compounds were unequivocally confirmed against the analytical standard. Pharmaceuticals and personal care products (PPCPs), with 31 substances identified and 8 confirmed were the main group of compounds. Compounds frequently detected in all sludge samples include nucleotides such as adenosine triphosphate, amino acids such as phenylalanine, or peptides such as leu-phe. Altogether, the results of this work highlight the interest of HRMS to draw the profile of organic compounds in complex matrices.
|
|
Veure al catàleg Trobes
|
|
|
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element