NAGIOS: RODERIC FUNCIONANDO

A method for approximating optimal statistical significances with machine-learned likelihoods

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

A method for approximating optimal statistical significances with machine-learned likelihoods

Mostra el registre parcial de l'element

dc.contributor.author Arganda Carreras, Ernesto
dc.contributor.author Marcano Imaz, Xavier
dc.contributor.author Martín Lozano, Víctor
dc.contributor.author Medina, Anibal
dc.contributor.author Pérez, Andrés
dc.contributor.author Szewc, M.
dc.contributor.author Szynkman, Alejandro
dc.date.accessioned 2023-05-30T16:19:42Z
dc.date.available 2023-05-30T16:19:42Z
dc.date.issued 2022
dc.identifier.citation Arganda Carreras, Ernesto Marcano Imaz, Xavier Martín Lozano, Víctor Medina, Anibal Pérez, Andrés Szewc, M. Szynkman, Alejandro 2022 A method for approximating optimal statistical significances with machine-learned likelihoods European Physical Journal C 82 993
dc.identifier.uri https://hdl.handle.net/10550/87128
dc.description.abstract Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results.
dc.language.iso eng
dc.relation.ispartof European Physical Journal C, 2022, vol. 82, num. 993
dc.subject Física
dc.title A method for approximating optimal statistical significances with machine-learned likelihoods
dc.type journal article
dc.date.updated 2023-05-30T16:19:42Z
dc.identifier.doi 10.1140/epjc/s10052-022-10944-3
dc.identifier.idgrec 159138
dc.rights.accessRights open access

Visualització       (1.150Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques