NAGIOS: RODERIC FUNCIONANDO

Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets

Mostra el registre parcial de l'element

dc.contributor.author Sun, Lunan
dc.contributor.author Paschalidis, Vasileios
dc.contributor.author Ruiz Meneses, Milton Javier
dc.contributor.author Shapiro, Stuart L.
dc.date.accessioned 2023-06-02T08:41:55Z
dc.date.available 2023-06-02T08:41:55Z
dc.date.issued 2017
dc.identifier.citation Sun, Lunan Paschalidis, Vasileios Ruiz Meneses, Milton Javier Shapiro, Stuart L. 2017 Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets Physical Review D 96 4 1 9
dc.identifier.uri https://hdl.handle.net/10550/87645
dc.description.abstract We perform magnetohydrodynamic simulations in full general relativity of uniformly rotating stars that are marginally unstable to collapse. These simulations model the direct collapse of supermassive stars (SMSs) to seed black holes that can grow to become the supermassive black holes at the centers of quasars and active galactic nuclei. They also crudely model the collapse of massive Population III stars to black holes, which could power a fraction of distant, long gamma-ray bursts. The initial stellar models we adopt are Γ=4/3 polytropes initially with a dynamically unimportant dipole magnetic field. We treat initial magnetic-field configurations either confined to the stellar interior or extending out from the stellar interior into the exterior. We find that the black hole formed following collapse has mass MBH≃0.9M (where M is the mass of the initial star) and dimensionless spin parameter aBH/MBH≃0.7. A massive, hot, magnetized torus surrounds the remnant black hole. At Δt∼400-550M≈2000−2700(M/106  M⊙)s following the gravitational wave peak amplitude, an incipient jet is launched. The disk lifetime is Δt∼105(M/106  M⊙)s, and the outgoing Poynting luminosity is LEM∼1051−52  ergs/s. If≳1%−10% of this power is converted into gamma rays, Swift and Fermi could potentially detect these events out to large redshifts z∼20. Thus, SMSs could be sources of ultra-long gamma-ray bursts (ULGRBs), and massive Population III stars could be the progenitors that power a fraction of the long GRBs observed at redshift z∼5-8. Gravitational waves are copiously emitted during the collapse and peak at ∼15(106  M⊙/M)  mHz [∼0.15(104  M⊙/M)  Hz], i.e., in the LISA (DECIGO/BBO) band; optimally oriented SMSs could be detectable by LISA (DECIGO/BBO) at z≲3 (z≲11). Hence, 104  M⊙ SMSs collapsing at z∼10 are promising multimessenger sources of coincident gravitational and electromagnetic waves.
dc.language.iso eng
dc.relation.ispartof Physical Review D, 2017, vol. 96, num. 4, p. 1-9
dc.subject Astronomia
dc.subject Astrofísica
dc.title Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets
dc.type journal article
dc.date.updated 2023-06-02T08:41:55Z
dc.identifier.doi 10.1103/PhysRevD.96.043006
dc.identifier.idgrec 160075
dc.rights.accessRights open access

Visualització       (1.592Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques