NAGIOS: RODERIC FUNCIONANDO

Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles

Mostra el registre parcial de l'element

dc.contributor.author Sun, Lunan
dc.contributor.author Ruiz Meneses, Milton Javier
dc.contributor.author Shapiro, Stuart L.
dc.date.accessioned 2023-06-02T10:38:42Z
dc.date.available 2023-06-02T10:38:42Z
dc.date.issued 2018
dc.identifier.citation Sun, Lunan Ruiz Meneses, Milton Javier Shapiro, Stuart L. 2018 Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles Physical Review D 98 10 1 14
dc.identifier.uri https://hdl.handle.net/10550/87654
dc.description.abstract Collapsing supermassive stars (SMSs) with masses M≳104-6M⊙ have long been speculated to be the seeds that can grow and become supermassive black holes (SMBHs). We previously performed general relativistic magnetohydrodynamic (GRMHD) simulations of marginally stable Γ=4/3 polytropes uniformly rotating at the mass-shedding limit and endowed initially with a dynamically unimportant dipole magnetic field to model the direct collapse of SMSs. These configurations are supported entirely by thermal radiation pressure and reliably model SMSs with M≳106M⊙. We found that around 90% of the initial stellar mass forms a spinning black hole (BH) remnant surrounded by a massive, hot, magnetized torus, which eventually launches a magnetically-driven jet. SMSs could be therefore sources of ultra-long gamma-ray bursts (ULGRBs). Here we perform GRMHD simulations of Γ≳4/3, polytropes to account for the perturbative role of gas pressure in SMSs with M≲106M⊙. We also consider different initial stellar rotation profiles. The stars are initially seeded with a dynamically weak dipole magnetic field that is either confined to the stellar interior or extended from its interior into the stellar exterior. We calculate the gravitational wave burst signal for the different cases. We find that the mass of the black hole remnant is 90%-99% of the initial stellar mass, depending sharply on Γ−4/3 as well as on the initial stellar rotation profile. After t∼250-550M≈1−2×103(M/106M⊙)  s following the appearance of the BH horizon, an incipient jet is launched and it lasts for ∼104-105(M/106M⊙)  s, consistent with the duration of long gamma-ray bursts. Our numerical results suggest that the Blandford-Znajek mechanism powers the incipient jet. They are also in rough agreement with our recently proposed universal model that estimates accretion rates and electromagnetic (Poynting) luminosities that characterize magnetized BH-disk remnant systems that launch a jet. This model helps explain why the outgoing electromagnetic luminosities computed for vastly different BH-disk formation scenarios all reside within a narrow range (∼1052±1  erg s−1), roughly independent of M.
dc.language.iso eng
dc.relation.ispartof Physical Review D, 2018, vol. 98, num. 10, p. 1-14
dc.subject Astronomia
dc.subject Astrofísica
dc.title Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles
dc.type journal article
dc.date.updated 2023-06-02T10:38:42Z
dc.identifier.doi 10.1103/PhysRevD.98.103008
dc.identifier.idgrec 160079
dc.rights.accessRights open access

Visualització       (953.1Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques