NAGIOS: RODERIC FUNCIONANDO

Magnetic Braking and Damping of Differential Rotation in Massive Stars

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Magnetic Braking and Damping of Differential Rotation in Massive Stars

Mostra el registre parcial de l'element

dc.contributor.author Sun, Lunan
dc.contributor.author Ruiz Meneses, Milton Javier
dc.contributor.author Shapiro, Stuart L.
dc.date.accessioned 2023-06-02T13:21:33Z
dc.date.available 2023-06-02T13:21:33Z
dc.date.issued 2019
dc.identifier.citation Sun, Lunan Ruiz Meneses, Milton Javier Shapiro, Stuart L. 2019 Magnetic Braking and Damping of Differential Rotation in Massive Stars Physical Review D 99 6 064057-1 064057-12
dc.identifier.uri https://hdl.handle.net/10550/87667
dc.description.abstract Fragmentation of highly differentially rotating massive stars that undergo collapse has been suggested as a possible channel for binary black hole formation. Such a scenario could explain the formation of the new population of massive black holes detected by the LIGO/VIRGO gravitational wave laser interferometers. We probe that scenario by performing general relativistic magnetohydrodynamic simulations of differentially rotating massive stars supported by thermal radiation pressure plus a gas pressure perturbation. The stars are initially threaded by a dynamically weak, poloidal magnetic field confined to the stellar interior. We find that magnetic braking and turbulent viscous damping via magnetic winding and the magnetorotational instability in the bulk of the star redistribute angular momentum, damp differential rotation and induce the formation of a massive and nearly uniformly rotating inner core surrounded by a Keplerian envelope. The core+disk configuration evolves on a secular timescale and remains in quasistationary equilibrium until the termination of our simulations. Our results suggest that the high degree of differential rotation required for m=2 seed density perturbations to trigger gas fragmentation and binary black hole formation is likely to be suppressed during the normal lifetime of the star prior to evolving to the point of dynamical instability to collapse. Other cataclysmic events, such as stellar mergers leading to collapse, may therefore be necessary to reestablish sufficient differential rotation and density perturbations to drive nonaxisymmetric modes leading to binary black hole formation.
dc.language.iso eng
dc.relation.ispartof Physical Review D, 2019, vol. 99, num. 6, p. 064057-1-064057-12
dc.subject Astrofísica
dc.title Magnetic Braking and Damping of Differential Rotation in Massive Stars
dc.type journal article
dc.date.updated 2023-06-02T13:21:33Z
dc.identifier.doi 10.1103/PhysRevD.99.064057
dc.identifier.idgrec 160083
dc.rights.accessRights open access

Visualització       (943.8Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques