NAGIOS: RODERIC FUNCIONANDO

Magnetohydrodynamic simulations of binary neutron star mergers in general relativity: Effects of magnetic field orientation on jet launching

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Magnetohydrodynamic simulations of binary neutron star mergers in general relativity: Effects of magnetic field orientation on jet launching

Mostra el registre parcial de l'element

dc.contributor.author Ruiz Meneses, Milton Javier
dc.contributor.author Tsokaros, Antonios
dc.contributor.author Shapiro, Stuart L.
dc.date.accessioned 2023-06-02T14:01:30Z
dc.date.available 2023-06-02T14:01:30Z
dc.date.issued 2020
dc.identifier.citation Ruiz Meneses, Milton Javier Tsokaros, Antonios Shapiro, Stuart L. 2020 Magnetohydrodynamic simulations of binary neutron star mergers in general relativity: Effects of magnetic field orientation on jet launching Physical Review D 101 6 064042-1 064042-18
dc.identifier.uri https://hdl.handle.net/10550/87672
dc.description.abstract Binary neutron star mergers can be sources of gravitational waves coincident with electromagnetic counterpart emission across the spectrum. To solidify their role as multimessenger sources, we present fully 3D, general relativistic, magnetohydrodynamic simulations of highly spinning binary neutrons stars initially on quasicircular orbits that merge and undergo delayed collapse to a black hole. The binaries consist of two identical stars modeled as Γ=2 polytropes with spin χNS=0.36 aligned along the direction of the total orbital angular momentum L. Each star is initially threaded by a dynamical unimportant interior dipole magnetic field. The field is extended into the exterior where a nearly force-free magnetosphere resembles that of a pulsar. The magnetic dipole moment μ is either aligned or perpendicular to L and has the same initial magnitude for each orientation. For comparison, we also impose symmetry across the orbital plane in one case where μ in both stars is aligned along L. We find that the lifetime of the transient hypermassive neutron star remnant, the jet launching time, and the ejecta (which can give rise to a detectable kilonova) are very sensitive to the magnetic field orientation. By contrast, the physical properties of the black hole+disk remnant, such as the mass and spin of the black hole, the accretion rate, and the electromagnetic (Poynting) luminosity, are roughly independent of the initial magnetic field orientation. In addition, we find imposing symmetry across the orbital plane does not play a significant role in the final outcome of the mergers. Our results suggest that, as in the black hole-neutron star merger scenario, an incipient jet emerges only when the seed magnetic field has a sufficiently large-scale poloidal component aligned to the initial orbital angular momentum. The lifetime [Δt≳140(MNS/1.625  M⊙)  ms] and Poynting luminosities [LEM≃1052  erg/s] of the jet, when it forms, are consistent with typical short gamma-ray bursts, as well as with the Blandford-Znajek mechanism for launching jets.
dc.language.iso eng
dc.relation.ispartof Physical Review D, 2020, vol. 101, num. 6, p. 064042-1-064042-18
dc.subject Astrofísica
dc.title Magnetohydrodynamic simulations of binary neutron star mergers in general relativity: Effects of magnetic field orientation on jet launching
dc.type journal article
dc.date.updated 2023-06-02T14:01:30Z
dc.identifier.doi 10.1103/PhysRevD.101.064042
dc.identifier.idgrec 160089
dc.rights.accessRights open access

Visualització       (1.050Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques